In [10]:
from sklearn import datasets
iris = datasets.load_iris()

In [11]:
iris


Out[11]:
{'DESCR': 'Iris Plants Database\n====================\n\nNotes\n-----\nData Set Characteristics:\n    :Number of Instances: 150 (50 in each of three classes)\n    :Number of Attributes: 4 numeric, predictive attributes and the class\n    :Attribute Information:\n        - sepal length in cm\n        - sepal width in cm\n        - petal length in cm\n        - petal width in cm\n        - class:\n                - Iris-Setosa\n                - Iris-Versicolour\n                - Iris-Virginica\n    :Summary Statistics:\n\n    ============== ==== ==== ======= ===== ====================\n                    Min  Max   Mean    SD   Class Correlation\n    ============== ==== ==== ======= ===== ====================\n    sepal length:   4.3  7.9   5.84   0.83    0.7826\n    sepal width:    2.0  4.4   3.05   0.43   -0.4194\n    petal length:   1.0  6.9   3.76   1.76    0.9490  (high!)\n    petal width:    0.1  2.5   1.20  0.76     0.9565  (high!)\n    ============== ==== ==== ======= ===== ====================\n\n    :Missing Attribute Values: None\n    :Class Distribution: 33.3% for each of 3 classes.\n    :Creator: R.A. Fisher\n    :Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)\n    :Date: July, 1988\n\nThis is a copy of UCI ML iris datasets.\nhttp://archive.ics.uci.edu/ml/datasets/Iris\n\nThe famous Iris database, first used by Sir R.A Fisher\n\nThis is perhaps the best known database to be found in the\npattern recognition literature.  Fisher\'s paper is a classic in the field and\nis referenced frequently to this day.  (See Duda & Hart, for example.)  The\ndata set contains 3 classes of 50 instances each, where each class refers to a\ntype of iris plant.  One class is linearly separable from the other 2; the\nlatter are NOT linearly separable from each other.\n\nReferences\n----------\n   - Fisher,R.A. "The use of multiple measurements in taxonomic problems"\n     Annual Eugenics, 7, Part II, 179-188 (1936); also in "Contributions to\n     Mathematical Statistics" (John Wiley, NY, 1950).\n   - Duda,R.O., & Hart,P.E. (1973) Pattern Classification and Scene Analysis.\n     (Q327.D83) John Wiley & Sons.  ISBN 0-471-22361-1.  See page 218.\n   - Dasarathy, B.V. (1980) "Nosing Around the Neighborhood: A New System\n     Structure and Classification Rule for Recognition in Partially Exposed\n     Environments".  IEEE Transactions on Pattern Analysis and Machine\n     Intelligence, Vol. PAMI-2, No. 1, 67-71.\n   - Gates, G.W. (1972) "The Reduced Nearest Neighbor Rule".  IEEE Transactions\n     on Information Theory, May 1972, 431-433.\n   - See also: 1988 MLC Proceedings, 54-64.  Cheeseman et al"s AUTOCLASS II\n     conceptual clustering system finds 3 classes in the data.\n   - Many, many more ...\n',
 'data': array([[ 5.1,  3.5,  1.4,  0.2],
        [ 4.9,  3. ,  1.4,  0.2],
        [ 4.7,  3.2,  1.3,  0.2],
        [ 4.6,  3.1,  1.5,  0.2],
        [ 5. ,  3.6,  1.4,  0.2],
        [ 5.4,  3.9,  1.7,  0.4],
        [ 4.6,  3.4,  1.4,  0.3],
        [ 5. ,  3.4,  1.5,  0.2],
        [ 4.4,  2.9,  1.4,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 5.4,  3.7,  1.5,  0.2],
        [ 4.8,  3.4,  1.6,  0.2],
        [ 4.8,  3. ,  1.4,  0.1],
        [ 4.3,  3. ,  1.1,  0.1],
        [ 5.8,  4. ,  1.2,  0.2],
        [ 5.7,  4.4,  1.5,  0.4],
        [ 5.4,  3.9,  1.3,  0.4],
        [ 5.1,  3.5,  1.4,  0.3],
        [ 5.7,  3.8,  1.7,  0.3],
        [ 5.1,  3.8,  1.5,  0.3],
        [ 5.4,  3.4,  1.7,  0.2],
        [ 5.1,  3.7,  1.5,  0.4],
        [ 4.6,  3.6,  1. ,  0.2],
        [ 5.1,  3.3,  1.7,  0.5],
        [ 4.8,  3.4,  1.9,  0.2],
        [ 5. ,  3. ,  1.6,  0.2],
        [ 5. ,  3.4,  1.6,  0.4],
        [ 5.2,  3.5,  1.5,  0.2],
        [ 5.2,  3.4,  1.4,  0.2],
        [ 4.7,  3.2,  1.6,  0.2],
        [ 4.8,  3.1,  1.6,  0.2],
        [ 5.4,  3.4,  1.5,  0.4],
        [ 5.2,  4.1,  1.5,  0.1],
        [ 5.5,  4.2,  1.4,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 5. ,  3.2,  1.2,  0.2],
        [ 5.5,  3.5,  1.3,  0.2],
        [ 4.9,  3.1,  1.5,  0.1],
        [ 4.4,  3. ,  1.3,  0.2],
        [ 5.1,  3.4,  1.5,  0.2],
        [ 5. ,  3.5,  1.3,  0.3],
        [ 4.5,  2.3,  1.3,  0.3],
        [ 4.4,  3.2,  1.3,  0.2],
        [ 5. ,  3.5,  1.6,  0.6],
        [ 5.1,  3.8,  1.9,  0.4],
        [ 4.8,  3. ,  1.4,  0.3],
        [ 5.1,  3.8,  1.6,  0.2],
        [ 4.6,  3.2,  1.4,  0.2],
        [ 5.3,  3.7,  1.5,  0.2],
        [ 5. ,  3.3,  1.4,  0.2],
        [ 7. ,  3.2,  4.7,  1.4],
        [ 6.4,  3.2,  4.5,  1.5],
        [ 6.9,  3.1,  4.9,  1.5],
        [ 5.5,  2.3,  4. ,  1.3],
        [ 6.5,  2.8,  4.6,  1.5],
        [ 5.7,  2.8,  4.5,  1.3],
        [ 6.3,  3.3,  4.7,  1.6],
        [ 4.9,  2.4,  3.3,  1. ],
        [ 6.6,  2.9,  4.6,  1.3],
        [ 5.2,  2.7,  3.9,  1.4],
        [ 5. ,  2. ,  3.5,  1. ],
        [ 5.9,  3. ,  4.2,  1.5],
        [ 6. ,  2.2,  4. ,  1. ],
        [ 6.1,  2.9,  4.7,  1.4],
        [ 5.6,  2.9,  3.6,  1.3],
        [ 6.7,  3.1,  4.4,  1.4],
        [ 5.6,  3. ,  4.5,  1.5],
        [ 5.8,  2.7,  4.1,  1. ],
        [ 6.2,  2.2,  4.5,  1.5],
        [ 5.6,  2.5,  3.9,  1.1],
        [ 5.9,  3.2,  4.8,  1.8],
        [ 6.1,  2.8,  4. ,  1.3],
        [ 6.3,  2.5,  4.9,  1.5],
        [ 6.1,  2.8,  4.7,  1.2],
        [ 6.4,  2.9,  4.3,  1.3],
        [ 6.6,  3. ,  4.4,  1.4],
        [ 6.8,  2.8,  4.8,  1.4],
        [ 6.7,  3. ,  5. ,  1.7],
        [ 6. ,  2.9,  4.5,  1.5],
        [ 5.7,  2.6,  3.5,  1. ],
        [ 5.5,  2.4,  3.8,  1.1],
        [ 5.5,  2.4,  3.7,  1. ],
        [ 5.8,  2.7,  3.9,  1.2],
        [ 6. ,  2.7,  5.1,  1.6],
        [ 5.4,  3. ,  4.5,  1.5],
        [ 6. ,  3.4,  4.5,  1.6],
        [ 6.7,  3.1,  4.7,  1.5],
        [ 6.3,  2.3,  4.4,  1.3],
        [ 5.6,  3. ,  4.1,  1.3],
        [ 5.5,  2.5,  4. ,  1.3],
        [ 5.5,  2.6,  4.4,  1.2],
        [ 6.1,  3. ,  4.6,  1.4],
        [ 5.8,  2.6,  4. ,  1.2],
        [ 5. ,  2.3,  3.3,  1. ],
        [ 5.6,  2.7,  4.2,  1.3],
        [ 5.7,  3. ,  4.2,  1.2],
        [ 5.7,  2.9,  4.2,  1.3],
        [ 6.2,  2.9,  4.3,  1.3],
        [ 5.1,  2.5,  3. ,  1.1],
        [ 5.7,  2.8,  4.1,  1.3],
        [ 6.3,  3.3,  6. ,  2.5],
        [ 5.8,  2.7,  5.1,  1.9],
        [ 7.1,  3. ,  5.9,  2.1],
        [ 6.3,  2.9,  5.6,  1.8],
        [ 6.5,  3. ,  5.8,  2.2],
        [ 7.6,  3. ,  6.6,  2.1],
        [ 4.9,  2.5,  4.5,  1.7],
        [ 7.3,  2.9,  6.3,  1.8],
        [ 6.7,  2.5,  5.8,  1.8],
        [ 7.2,  3.6,  6.1,  2.5],
        [ 6.5,  3.2,  5.1,  2. ],
        [ 6.4,  2.7,  5.3,  1.9],
        [ 6.8,  3. ,  5.5,  2.1],
        [ 5.7,  2.5,  5. ,  2. ],
        [ 5.8,  2.8,  5.1,  2.4],
        [ 6.4,  3.2,  5.3,  2.3],
        [ 6.5,  3. ,  5.5,  1.8],
        [ 7.7,  3.8,  6.7,  2.2],
        [ 7.7,  2.6,  6.9,  2.3],
        [ 6. ,  2.2,  5. ,  1.5],
        [ 6.9,  3.2,  5.7,  2.3],
        [ 5.6,  2.8,  4.9,  2. ],
        [ 7.7,  2.8,  6.7,  2. ],
        [ 6.3,  2.7,  4.9,  1.8],
        [ 6.7,  3.3,  5.7,  2.1],
        [ 7.2,  3.2,  6. ,  1.8],
        [ 6.2,  2.8,  4.8,  1.8],
        [ 6.1,  3. ,  4.9,  1.8],
        [ 6.4,  2.8,  5.6,  2.1],
        [ 7.2,  3. ,  5.8,  1.6],
        [ 7.4,  2.8,  6.1,  1.9],
        [ 7.9,  3.8,  6.4,  2. ],
        [ 6.4,  2.8,  5.6,  2.2],
        [ 6.3,  2.8,  5.1,  1.5],
        [ 6.1,  2.6,  5.6,  1.4],
        [ 7.7,  3. ,  6.1,  2.3],
        [ 6.3,  3.4,  5.6,  2.4],
        [ 6.4,  3.1,  5.5,  1.8],
        [ 6. ,  3. ,  4.8,  1.8],
        [ 6.9,  3.1,  5.4,  2.1],
        [ 6.7,  3.1,  5.6,  2.4],
        [ 6.9,  3.1,  5.1,  2.3],
        [ 5.8,  2.7,  5.1,  1.9],
        [ 6.8,  3.2,  5.9,  2.3],
        [ 6.7,  3.3,  5.7,  2.5],
        [ 6.7,  3. ,  5.2,  2.3],
        [ 6.3,  2.5,  5. ,  1.9],
        [ 6.5,  3. ,  5.2,  2. ],
        [ 6.2,  3.4,  5.4,  2.3],
        [ 5.9,  3. ,  5.1,  1.8]]),
 'feature_names': ['sepal length (cm)',
  'sepal width (cm)',
  'petal length (cm)',
  'petal width (cm)'],
 'target': array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 'target_names': array(['setosa', 'versicolor', 'virginica'],
       dtype='<U10')}

In [15]:
iris.data


Out[15]:
array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       [ 4.6,  3.1,  1.5,  0.2],
       [ 5. ,  3.6,  1.4,  0.2],
       [ 5.4,  3.9,  1.7,  0.4],
       [ 4.6,  3.4,  1.4,  0.3],
       [ 5. ,  3.4,  1.5,  0.2],
       [ 4.4,  2.9,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5.4,  3.7,  1.5,  0.2],
       [ 4.8,  3.4,  1.6,  0.2],
       [ 4.8,  3. ,  1.4,  0.1],
       [ 4.3,  3. ,  1.1,  0.1],
       [ 5.8,  4. ,  1.2,  0.2],
       [ 5.7,  4.4,  1.5,  0.4],
       [ 5.4,  3.9,  1.3,  0.4],
       [ 5.1,  3.5,  1.4,  0.3],
       [ 5.7,  3.8,  1.7,  0.3],
       [ 5.1,  3.8,  1.5,  0.3],
       [ 5.4,  3.4,  1.7,  0.2],
       [ 5.1,  3.7,  1.5,  0.4],
       [ 4.6,  3.6,  1. ,  0.2],
       [ 5.1,  3.3,  1.7,  0.5],
       [ 4.8,  3.4,  1.9,  0.2],
       [ 5. ,  3. ,  1.6,  0.2],
       [ 5. ,  3.4,  1.6,  0.4],
       [ 5.2,  3.5,  1.5,  0.2],
       [ 5.2,  3.4,  1.4,  0.2],
       [ 4.7,  3.2,  1.6,  0.2],
       [ 4.8,  3.1,  1.6,  0.2],
       [ 5.4,  3.4,  1.5,  0.4],
       [ 5.2,  4.1,  1.5,  0.1],
       [ 5.5,  4.2,  1.4,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 5. ,  3.2,  1.2,  0.2],
       [ 5.5,  3.5,  1.3,  0.2],
       [ 4.9,  3.1,  1.5,  0.1],
       [ 4.4,  3. ,  1.3,  0.2],
       [ 5.1,  3.4,  1.5,  0.2],
       [ 5. ,  3.5,  1.3,  0.3],
       [ 4.5,  2.3,  1.3,  0.3],
       [ 4.4,  3.2,  1.3,  0.2],
       [ 5. ,  3.5,  1.6,  0.6],
       [ 5.1,  3.8,  1.9,  0.4],
       [ 4.8,  3. ,  1.4,  0.3],
       [ 5.1,  3.8,  1.6,  0.2],
       [ 4.6,  3.2,  1.4,  0.2],
       [ 5.3,  3.7,  1.5,  0.2],
       [ 5. ,  3.3,  1.4,  0.2],
       [ 7. ,  3.2,  4.7,  1.4],
       [ 6.4,  3.2,  4.5,  1.5],
       [ 6.9,  3.1,  4.9,  1.5],
       [ 5.5,  2.3,  4. ,  1.3],
       [ 6.5,  2.8,  4.6,  1.5],
       [ 5.7,  2.8,  4.5,  1.3],
       [ 6.3,  3.3,  4.7,  1.6],
       [ 4.9,  2.4,  3.3,  1. ],
       [ 6.6,  2.9,  4.6,  1.3],
       [ 5.2,  2.7,  3.9,  1.4],
       [ 5. ,  2. ,  3.5,  1. ],
       [ 5.9,  3. ,  4.2,  1.5],
       [ 6. ,  2.2,  4. ,  1. ],
       [ 6.1,  2.9,  4.7,  1.4],
       [ 5.6,  2.9,  3.6,  1.3],
       [ 6.7,  3.1,  4.4,  1.4],
       [ 5.6,  3. ,  4.5,  1.5],
       [ 5.8,  2.7,  4.1,  1. ],
       [ 6.2,  2.2,  4.5,  1.5],
       [ 5.6,  2.5,  3.9,  1.1],
       [ 5.9,  3.2,  4.8,  1.8],
       [ 6.1,  2.8,  4. ,  1.3],
       [ 6.3,  2.5,  4.9,  1.5],
       [ 6.1,  2.8,  4.7,  1.2],
       [ 6.4,  2.9,  4.3,  1.3],
       [ 6.6,  3. ,  4.4,  1.4],
       [ 6.8,  2.8,  4.8,  1.4],
       [ 6.7,  3. ,  5. ,  1.7],
       [ 6. ,  2.9,  4.5,  1.5],
       [ 5.7,  2.6,  3.5,  1. ],
       [ 5.5,  2.4,  3.8,  1.1],
       [ 5.5,  2.4,  3.7,  1. ],
       [ 5.8,  2.7,  3.9,  1.2],
       [ 6. ,  2.7,  5.1,  1.6],
       [ 5.4,  3. ,  4.5,  1.5],
       [ 6. ,  3.4,  4.5,  1.6],
       [ 6.7,  3.1,  4.7,  1.5],
       [ 6.3,  2.3,  4.4,  1.3],
       [ 5.6,  3. ,  4.1,  1.3],
       [ 5.5,  2.5,  4. ,  1.3],
       [ 5.5,  2.6,  4.4,  1.2],
       [ 6.1,  3. ,  4.6,  1.4],
       [ 5.8,  2.6,  4. ,  1.2],
       [ 5. ,  2.3,  3.3,  1. ],
       [ 5.6,  2.7,  4.2,  1.3],
       [ 5.7,  3. ,  4.2,  1.2],
       [ 5.7,  2.9,  4.2,  1.3],
       [ 6.2,  2.9,  4.3,  1.3],
       [ 5.1,  2.5,  3. ,  1.1],
       [ 5.7,  2.8,  4.1,  1.3],
       [ 6.3,  3.3,  6. ,  2.5],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 7.1,  3. ,  5.9,  2.1],
       [ 6.3,  2.9,  5.6,  1.8],
       [ 6.5,  3. ,  5.8,  2.2],
       [ 7.6,  3. ,  6.6,  2.1],
       [ 4.9,  2.5,  4.5,  1.7],
       [ 7.3,  2.9,  6.3,  1.8],
       [ 6.7,  2.5,  5.8,  1.8],
       [ 7.2,  3.6,  6.1,  2.5],
       [ 6.5,  3.2,  5.1,  2. ],
       [ 6.4,  2.7,  5.3,  1.9],
       [ 6.8,  3. ,  5.5,  2.1],
       [ 5.7,  2.5,  5. ,  2. ],
       [ 5.8,  2.8,  5.1,  2.4],
       [ 6.4,  3.2,  5.3,  2.3],
       [ 6.5,  3. ,  5.5,  1.8],
       [ 7.7,  3.8,  6.7,  2.2],
       [ 7.7,  2.6,  6.9,  2.3],
       [ 6. ,  2.2,  5. ,  1.5],
       [ 6.9,  3.2,  5.7,  2.3],
       [ 5.6,  2.8,  4.9,  2. ],
       [ 7.7,  2.8,  6.7,  2. ],
       [ 6.3,  2.7,  4.9,  1.8],
       [ 6.7,  3.3,  5.7,  2.1],
       [ 7.2,  3.2,  6. ,  1.8],
       [ 6.2,  2.8,  4.8,  1.8],
       [ 6.1,  3. ,  4.9,  1.8],
       [ 6.4,  2.8,  5.6,  2.1],
       [ 7.2,  3. ,  5.8,  1.6],
       [ 7.4,  2.8,  6.1,  1.9],
       [ 7.9,  3.8,  6.4,  2. ],
       [ 6.4,  2.8,  5.6,  2.2],
       [ 6.3,  2.8,  5.1,  1.5],
       [ 6.1,  2.6,  5.6,  1.4],
       [ 7.7,  3. ,  6.1,  2.3],
       [ 6.3,  3.4,  5.6,  2.4],
       [ 6.4,  3.1,  5.5,  1.8],
       [ 6. ,  3. ,  4.8,  1.8],
       [ 6.9,  3.1,  5.4,  2.1],
       [ 6.7,  3.1,  5.6,  2.4],
       [ 6.9,  3.1,  5.1,  2.3],
       [ 5.8,  2.7,  5.1,  1.9],
       [ 6.8,  3.2,  5.9,  2.3],
       [ 6.7,  3.3,  5.7,  2.5],
       [ 6.7,  3. ,  5.2,  2.3],
       [ 6.3,  2.5,  5. ,  1.9],
       [ 6.5,  3. ,  5.2,  2. ],
       [ 6.2,  3.4,  5.4,  2.3],
       [ 5.9,  3. ,  5.1,  1.8]])

In [16]:
iris.target


Out[16]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [12]:
from sklearn.naive_bayes import GaussianNB
gnb = GaussianNB()

In [17]:
gnb.fit(iris.data, iris.target)


Out[17]:
GaussianNB(priors=None)

In [18]:
print(gnb.fit)


<bound method GaussianNB.fit of GaussianNB(priors=None)>

In [14]:
y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
y_pred


Out[14]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

In [22]:
import numpy as np
import pandas as pd

In [24]:
dict(pd.Series(iris.target).value_counts())


Out[24]:
{0: 50, 1: 50, 2: 50}

In [23]:
dict(pd.Series(y_pred).value_counts())


Out[23]:
{0: 50, 1: 50, 2: 50}

In [26]:
iris.data.shape


Out[26]:
(150, 4)

In [13]:
print("Number of mislabeled points out of a total %d points : %d"
%(iris.data.shape[0],(iris.target != y_pred).sum()))


Number of mislabeled points out of a total 150 points : 6

In [40]:
from sklearn.metrics import confusion_matrix

In [41]:
cnf_matrix = confusion_matrix(iris.target, y_pred)

In [42]:
cnf_matrix


Out[42]:
array([[50,  0,  0],
       [ 0, 47,  3],
       [ 0,  3, 47]])

In [48]:
from sklearn.preprocessing import label_binarize

In [53]:
# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
y


Out[53]:
array([[1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1]], dtype=int32)

In [54]:
y.shape


Out[54]:
(150, 3)

In [55]:
n_classes = y.shape[1]
n_classes


Out[55]:
3

In [56]:
y_pred = label_binarize(y_pred, classes=[0, 1, 2])
y_pred


Out[56]:
array([[1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [1, 0, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 1, 0],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 1, 0],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1],
       [0, 0, 1]])

In [57]:
from sklearn.metrics import roc_curve, auc

In [58]:
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
    fpr[i], tpr[i], _ = roc_curve(y[:, i], y_pred[:, i])
    roc_auc[i] = auc(fpr[i], tpr[i])

In [61]:
tpr


Out[61]:
{0: array([ 1.,  1.]),
 1: array([ 0.  ,  0.94,  1.  ]),
 2: array([ 0.  ,  0.94,  1.  ])}

In [60]:
fpr


Out[60]:
{0: array([ 0.,  1.]),
 1: array([ 0.  ,  0.03,  1.  ]),
 2: array([ 0.  ,  0.03,  1.  ])}

In [59]:
roc_auc


Out[59]:
{0: 1.0, 1: 0.95499999999999996, 2: 0.95499999999999996}