In [1]:
%load_ext autoreload

%autoreload 2

In [3]:
import sys

sys.path.append('..')

In [9]:
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline

In [1]:
from sklearn import datasets
from sklearn.metrics import classification_report, roc_curve, auc
from sklearn.model_selection import train_test_split

In [4]:
from vantgrd.logistic import LogisticRegressionFTRL, \
    LogisticRegressionWithAdagrad, LogisticRegressionWithAdadelta
from vantgrd.fm import FMWithAdagrad, FMWithSGD

In [5]:
epochs = 1

X, y = datasets.make_classification(n_samples=200000, n_features=25,
                                    n_informative=7, n_redundant=5, n_repeated=3,
                                    random_state=42, weights=[0.92, 0.08])

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)

models = [
    LogisticRegressionWithAdagrad(eta=.01, epochs=epochs, rate=1000),
    LogisticRegressionWithAdadelta(epochs=epochs, rate=1000),
    LogisticRegressionFTRL(epochs=epochs, rate=1000),
    FMWithAdagrad(eta=0.01, reg0=.01, regw=.01, regv=.01, rate=1000, epochs=epochs, n_factors=5),
    FMWithSGD(eta=0.01, reg0=.01, regw=.01, regv=.01, rate=1000, epochs=epochs, n_factors=5)
]

In [6]:
colors = {0: 'blue', 1: 'red', 2: 'black', 3: 'green', 4: 'yellow'}
labels = {0: 'lr-adagrad', 1: 'lr-adadelta', 2: 'lr-ftrl', 3: 'fm-adagrad', 4: 'fm-sgd'}

In [10]:
fig = plt.figure()
ax = fig.add_subplot(1, 2, 1)
ax.grid()
ax.set_ylabel("Logloss")

bx = fig.add_subplot(1, 2, 2)
bx.grid()
bx.set_xlabel("False positive rate")
bx.set_ylabel("True positive rate")

for idx, lr in enumerate(models):
    lr.fit(X_train, y_train)

    y_pred = lr.predict(X_test)
    print(classification_report(y_test, y_pred))

    ax.plot(lr.train_tracker_.loss_, color=colors[idx], label=labels[idx])

    y_test_prob = lr.raw_predict(X_test)

    fpr, tpr, thresholds = roc_curve(y_test, y_test_prob)
    roc_auc = auc(fpr, tpr)

    print("AUC = %f" % roc_auc)

    bx.plot(fpr, tpr, color=colors[idx], label='{0} ROC area = {1:.2f}'.format(labels[idx], roc_auc))

plt.show()


Epoch:   0 | Training Samples:      1000 | Loss:      470.72 | LossAdj:  0.47072 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      2000 | Loss:      887.01 | LossAdj:  0.44350 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      3000 | Loss:     1279.41 | LossAdj:  0.42647 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      4000 | Loss:     1665.92 | LossAdj:  0.41648 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      5000 | Loss:     2025.61 | LossAdj:  0.40512 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      6000 | Loss:     2388.46 | LossAdj:  0.39808 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      7000 | Loss:     2756.16 | LossAdj:  0.39374 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      8000 | Loss:     3101.86 | LossAdj:  0.38773 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      9000 | Loss:     3483.62 | LossAdj:  0.38707 | Time taken:    1 seconds
Epoch:   0 | Training Samples:     10000 | Loss:     3837.15 | LossAdj:  0.38371 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     11000 | Loss:     4189.33 | LossAdj:  0.38085 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     12000 | Loss:     4550.31 | LossAdj:  0.37919 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     13000 | Loss:     4887.99 | LossAdj:  0.37600 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     14000 | Loss:     5238.20 | LossAdj:  0.37416 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     15000 | Loss:     5591.28 | LossAdj:  0.37275 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     16000 | Loss:     5928.90 | LossAdj:  0.37056 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     17000 | Loss:     6261.83 | LossAdj:  0.36834 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     18000 | Loss:     6608.72 | LossAdj:  0.36715 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     19000 | Loss:     6962.23 | LossAdj:  0.36643 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     20000 | Loss:     7309.24 | LossAdj:  0.36546 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     21000 | Loss:     7647.64 | LossAdj:  0.36417 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     22000 | Loss:     7999.27 | LossAdj:  0.36360 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     23000 | Loss:     8348.37 | LossAdj:  0.36297 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     24000 | Loss:     8671.81 | LossAdj:  0.36133 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     25000 | Loss:     9001.01 | LossAdj:  0.36004 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     26000 | Loss:     9365.67 | LossAdj:  0.36022 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     27000 | Loss:     9704.38 | LossAdj:  0.35942 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     28000 | Loss:    10045.72 | LossAdj:  0.35878 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     29000 | Loss:    10388.37 | LossAdj:  0.35822 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     30000 | Loss:    10744.64 | LossAdj:  0.35815 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     31000 | Loss:    11103.24 | LossAdj:  0.35817 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     32000 | Loss:    11434.73 | LossAdj:  0.35734 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     33000 | Loss:    11772.02 | LossAdj:  0.35673 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     34000 | Loss:    12099.72 | LossAdj:  0.35587 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     35000 | Loss:    12421.56 | LossAdj:  0.35490 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     36000 | Loss:    12775.38 | LossAdj:  0.35487 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     37000 | Loss:    13082.44 | LossAdj:  0.35358 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     38000 | Loss:    13395.14 | LossAdj:  0.35250 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     39000 | Loss:    13726.41 | LossAdj:  0.35196 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     40000 | Loss:    14070.23 | LossAdj:  0.35176 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     41000 | Loss:    14405.91 | LossAdj:  0.35136 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     42000 | Loss:    14739.10 | LossAdj:  0.35093 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     43000 | Loss:    15080.39 | LossAdj:  0.35071 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     44000 | Loss:    15420.61 | LossAdj:  0.35047 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     45000 | Loss:    15746.40 | LossAdj:  0.34992 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     46000 | Loss:    16077.22 | LossAdj:  0.34950 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     47000 | Loss:    16413.14 | LossAdj:  0.34922 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     48000 | Loss:    16745.00 | LossAdj:  0.34885 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     49000 | Loss:    17084.91 | LossAdj:  0.34867 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     50000 | Loss:    17403.51 | LossAdj:  0.34807 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     51000 | Loss:    17742.75 | LossAdj:  0.34790 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     52000 | Loss:    18083.85 | LossAdj:  0.34777 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     53000 | Loss:    18402.10 | LossAdj:  0.34721 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     54000 | Loss:    18735.51 | LossAdj:  0.34695 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     55000 | Loss:    19067.36 | LossAdj:  0.34668 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     56000 | Loss:    19390.04 | LossAdj:  0.34625 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     57000 | Loss:    19740.23 | LossAdj:  0.34632 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     58000 | Loss:    20087.49 | LossAdj:  0.34634 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     59000 | Loss:    20419.64 | LossAdj:  0.34610 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     60000 | Loss:    20761.32 | LossAdj:  0.34602 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     61000 | Loss:    21085.56 | LossAdj:  0.34566 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     62000 | Loss:    21404.26 | LossAdj:  0.34523 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     63000 | Loss:    21739.67 | LossAdj:  0.34507 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     64000 | Loss:    22046.69 | LossAdj:  0.34448 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     65000 | Loss:    22372.83 | LossAdj:  0.34420 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     66000 | Loss:    22676.00 | LossAdj:  0.34358 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     67000 | Loss:    23010.78 | LossAdj:  0.34344 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     68000 | Loss:    23333.86 | LossAdj:  0.34315 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     69000 | Loss:    23660.18 | LossAdj:  0.34290 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     70000 | Loss:    23966.86 | LossAdj:  0.34238 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     71000 | Loss:    24295.49 | LossAdj:  0.34219 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     72000 | Loss:    24613.06 | LossAdj:  0.34185 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     73000 | Loss:    24919.90 | LossAdj:  0.34137 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     74000 | Loss:    25223.00 | LossAdj:  0.34085 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     75000 | Loss:    25537.77 | LossAdj:  0.34050 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     76000 | Loss:    25880.14 | LossAdj:  0.34053 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     77000 | Loss:    26206.60 | LossAdj:  0.34035 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     78000 | Loss:    26545.99 | LossAdj:  0.34033 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     79000 | Loss:    26862.26 | LossAdj:  0.34003 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     80000 | Loss:    27196.44 | LossAdj:  0.33996 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     81000 | Loss:    27538.10 | LossAdj:  0.33998 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     82000 | Loss:    27872.81 | LossAdj:  0.33991 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     83000 | Loss:    28214.18 | LossAdj:  0.33993 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     84000 | Loss:    28545.62 | LossAdj:  0.33983 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     85000 | Loss:    28855.19 | LossAdj:  0.33947 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     86000 | Loss:    29199.64 | LossAdj:  0.33953 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     87000 | Loss:    29541.74 | LossAdj:  0.33956 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     88000 | Loss:    29873.75 | LossAdj:  0.33947 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     89000 | Loss:    30180.09 | LossAdj:  0.33910 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     90000 | Loss:    30497.45 | LossAdj:  0.33886 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     91000 | Loss:    30842.46 | LossAdj:  0.33893 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     92000 | Loss:    31184.71 | LossAdj:  0.33896 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     93000 | Loss:    31482.70 | LossAdj:  0.33852 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     94000 | Loss:    31823.68 | LossAdj:  0.33855 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     95000 | Loss:    32143.73 | LossAdj:  0.33836 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     96000 | Loss:    32468.74 | LossAdj:  0.33822 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     97000 | Loss:    32785.78 | LossAdj:  0.33800 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     98000 | Loss:    33098.98 | LossAdj:  0.33774 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     99000 | Loss:    33438.79 | LossAdj:  0.33777 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    100000 | Loss:    33771.45 | LossAdj:  0.33771 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    101000 | Loss:    34094.00 | LossAdj:  0.33756 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    102000 | Loss:    34416.90 | LossAdj:  0.33742 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    103000 | Loss:    34754.25 | LossAdj:  0.33742 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    104000 | Loss:    35063.61 | LossAdj:  0.33715 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    105000 | Loss:    35395.20 | LossAdj:  0.33710 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    106000 | Loss:    35735.43 | LossAdj:  0.33713 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    107000 | Loss:    36050.06 | LossAdj:  0.33692 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    108000 | Loss:    36355.68 | LossAdj:  0.33663 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    109000 | Loss:    36682.73 | LossAdj:  0.33654 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    110000 | Loss:    37012.32 | LossAdj:  0.33648 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    111000 | Loss:    37337.16 | LossAdj:  0.33637 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    112000 | Loss:    37654.82 | LossAdj:  0.33620 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    113000 | Loss:    37974.46 | LossAdj:  0.33606 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    114000 | Loss:    38306.67 | LossAdj:  0.33602 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    115000 | Loss:    38627.66 | LossAdj:  0.33589 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    116000 | Loss:    38946.93 | LossAdj:  0.33575 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    117000 | Loss:    39283.28 | LossAdj:  0.33575 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    118000 | Loss:    39603.88 | LossAdj:  0.33563 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    119000 | Loss:    39928.25 | LossAdj:  0.33553 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    120000 | Loss:    40274.44 | LossAdj:  0.33562 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    121000 | Loss:    40609.30 | LossAdj:  0.33561 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    122000 | Loss:    40941.98 | LossAdj:  0.33559 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    123000 | Loss:    41249.06 | LossAdj:  0.33536 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    124000 | Loss:    41601.13 | LossAdj:  0.33549 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    125000 | Loss:    41919.35 | LossAdj:  0.33535 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    126000 | Loss:    42244.57 | LossAdj:  0.33527 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    127000 | Loss:    42572.57 | LossAdj:  0.33522 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    128000 | Loss:    42872.83 | LossAdj:  0.33494 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    129000 | Loss:    43168.19 | LossAdj:  0.33464 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    130000 | Loss:    43475.67 | LossAdj:  0.33443 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    131000 | Loss:    43792.90 | LossAdj:  0.33430 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    132000 | Loss:    44119.77 | LossAdj:  0.33424 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    133000 | Loss:    44440.39 | LossAdj:  0.33414 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    134000 | Loss:    44773.24 | LossAdj:  0.33413 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    135000 | Loss:    45113.47 | LossAdj:  0.33417 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    136000 | Loss:    45432.50 | LossAdj:  0.33406 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    137000 | Loss:    45762.35 | LossAdj:  0.33403 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    138000 | Loss:    46058.09 | LossAdj:  0.33375 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    139000 | Loss:    46355.22 | LossAdj:  0.33349 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    140000 | Loss:    46671.31 | LossAdj:  0.33337 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    141000 | Loss:    46983.53 | LossAdj:  0.33322 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    142000 | Loss:    47303.58 | LossAdj:  0.33312 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    143000 | Loss:    47625.97 | LossAdj:  0.33305 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    144000 | Loss:    47932.16 | LossAdj:  0.33286 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    145000 | Loss:    48235.09 | LossAdj:  0.33266 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    146000 | Loss:    48575.04 | LossAdj:  0.33271 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    147000 | Loss:    48897.69 | LossAdj:  0.33264 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    148000 | Loss:    49233.54 | LossAdj:  0.33266 | Time taken:   33 seconds
Epoch:   0 | Training Samples:    149000 | Loss:    49562.70 | LossAdj:  0.33264 | Time taken:   33 seconds
Epoch:   0 | Training Samples:    150000 | Loss:    49892.19 | LossAdj:  0.33261 | Time taken:   33 seconds
 --- TRAINING FINISHED IN 33 SECONDS WITH LOSS 0.33 ---
              precision    recall  f1-score   support

           0       0.97      0.89      0.93     45786
           1       0.38      0.72      0.50      4214

    accuracy                           0.88     50000
   macro avg       0.68      0.81      0.71     50000
weighted avg       0.92      0.88      0.89     50000

AUC = 0.895150
Epoch:   0 | Training Samples:      1000 | Loss:      573.45 | LossAdj:  0.57345 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      2000 | Loss:     1052.40 | LossAdj:  0.52620 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      3000 | Loss:     1480.65 | LossAdj:  0.49355 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      4000 | Loss:     1860.74 | LossAdj:  0.46519 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      5000 | Loss:     2200.74 | LossAdj:  0.44015 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      6000 | Loss:     2508.19 | LossAdj:  0.41803 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      7000 | Loss:     2796.02 | LossAdj:  0.39943 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      8000 | Loss:     3051.23 | LossAdj:  0.38140 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      9000 | Loss:     3332.85 | LossAdj:  0.37032 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     10000 | Loss:     3594.76 | LossAdj:  0.35948 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     11000 | Loss:     3852.40 | LossAdj:  0.35022 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     12000 | Loss:     4104.73 | LossAdj:  0.34206 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     13000 | Loss:     4344.82 | LossAdj:  0.33422 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     14000 | Loss:     4589.11 | LossAdj:  0.32779 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     15000 | Loss:     4821.60 | LossAdj:  0.32144 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     16000 | Loss:     5062.84 | LossAdj:  0.31643 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     17000 | Loss:     5295.81 | LossAdj:  0.31152 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     18000 | Loss:     5536.61 | LossAdj:  0.30759 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     19000 | Loss:     5800.74 | LossAdj:  0.30530 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     20000 | Loss:     6037.36 | LossAdj:  0.30187 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     21000 | Loss:     6295.87 | LossAdj:  0.29980 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     22000 | Loss:     6535.33 | LossAdj:  0.29706 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     23000 | Loss:     6756.56 | LossAdj:  0.29376 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     24000 | Loss:     7006.79 | LossAdj:  0.29195 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     25000 | Loss:     7226.08 | LossAdj:  0.28904 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     26000 | Loss:     7466.81 | LossAdj:  0.28718 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     27000 | Loss:     7709.35 | LossAdj:  0.28553 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     28000 | Loss:     7938.90 | LossAdj:  0.28353 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     29000 | Loss:     8164.53 | LossAdj:  0.28154 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     30000 | Loss:     8421.96 | LossAdj:  0.28073 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     31000 | Loss:     8671.44 | LossAdj:  0.27972 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     32000 | Loss:     8912.28 | LossAdj:  0.27851 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     33000 | Loss:     9128.50 | LossAdj:  0.27662 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     34000 | Loss:     9365.36 | LossAdj:  0.27545 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     35000 | Loss:     9575.84 | LossAdj:  0.27360 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     36000 | Loss:     9829.03 | LossAdj:  0.27303 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     37000 | Loss:    10030.71 | LossAdj:  0.27110 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     38000 | Loss:    10258.56 | LossAdj:  0.26996 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     39000 | Loss:    10489.83 | LossAdj:  0.26897 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     40000 | Loss:    10716.04 | LossAdj:  0.26790 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     41000 | Loss:    10933.79 | LossAdj:  0.26668 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     42000 | Loss:    11136.03 | LossAdj:  0.26514 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     43000 | Loss:    11360.49 | LossAdj:  0.26420 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     44000 | Loss:    11582.47 | LossAdj:  0.26324 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     45000 | Loss:    11795.96 | LossAdj:  0.26213 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     46000 | Loss:    12039.98 | LossAdj:  0.26174 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     47000 | Loss:    12249.80 | LossAdj:  0.26063 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     48000 | Loss:    12495.84 | LossAdj:  0.26033 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     49000 | Loss:    12711.04 | LossAdj:  0.25941 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     50000 | Loss:    12910.48 | LossAdj:  0.25821 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     51000 | Loss:    13110.62 | LossAdj:  0.25707 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     52000 | Loss:    13318.30 | LossAdj:  0.25612 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     53000 | Loss:    13515.30 | LossAdj:  0.25501 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     54000 | Loss:    13752.30 | LossAdj:  0.25467 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     55000 | Loss:    13950.51 | LossAdj:  0.25365 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     56000 | Loss:    14177.63 | LossAdj:  0.25317 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     57000 | Loss:    14414.37 | LossAdj:  0.25288 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     58000 | Loss:    14639.61 | LossAdj:  0.25241 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     59000 | Loss:    14831.95 | LossAdj:  0.25139 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     60000 | Loss:    15019.63 | LossAdj:  0.25033 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     61000 | Loss:    15210.39 | LossAdj:  0.24935 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     62000 | Loss:    15417.17 | LossAdj:  0.24866 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     63000 | Loss:    15639.59 | LossAdj:  0.24825 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     64000 | Loss:    15844.09 | LossAdj:  0.24756 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     65000 | Loss:    16041.35 | LossAdj:  0.24679 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     66000 | Loss:    16223.59 | LossAdj:  0.24581 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     67000 | Loss:    16429.62 | LossAdj:  0.24522 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     68000 | Loss:    16640.48 | LossAdj:  0.24471 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     69000 | Loss:    16853.01 | LossAdj:  0.24425 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     70000 | Loss:    17075.29 | LossAdj:  0.24393 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     71000 | Loss:    17294.03 | LossAdj:  0.24358 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     72000 | Loss:    17507.40 | LossAdj:  0.24316 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     73000 | Loss:    17720.44 | LossAdj:  0.24275 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     74000 | Loss:    17939.96 | LossAdj:  0.24243 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     75000 | Loss:    18189.16 | LossAdj:  0.24252 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     76000 | Loss:    18392.08 | LossAdj:  0.24200 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     77000 | Loss:    18607.25 | LossAdj:  0.24165 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     78000 | Loss:    18806.09 | LossAdj:  0.24110 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     79000 | Loss:    19016.91 | LossAdj:  0.24072 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     80000 | Loss:    19242.32 | LossAdj:  0.24053 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     81000 | Loss:    19460.39 | LossAdj:  0.24025 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     82000 | Loss:    19696.29 | LossAdj:  0.24020 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     83000 | Loss:    19916.44 | LossAdj:  0.23996 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     84000 | Loss:    20155.78 | LossAdj:  0.23995 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     85000 | Loss:    20386.03 | LossAdj:  0.23984 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     86000 | Loss:    20616.06 | LossAdj:  0.23972 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     87000 | Loss:    20834.22 | LossAdj:  0.23947 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     88000 | Loss:    21050.58 | LossAdj:  0.23921 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     89000 | Loss:    21217.89 | LossAdj:  0.23840 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     90000 | Loss:    21405.14 | LossAdj:  0.23783 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     91000 | Loss:    21626.20 | LossAdj:  0.23765 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     92000 | Loss:    21858.53 | LossAdj:  0.23759 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     93000 | Loss:    22069.67 | LossAdj:  0.23731 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     94000 | Loss:    22279.68 | LossAdj:  0.23702 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     95000 | Loss:    22501.58 | LossAdj:  0.23686 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     96000 | Loss:    22743.99 | LossAdj:  0.23692 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     97000 | Loss:    22936.44 | LossAdj:  0.23646 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     98000 | Loss:    23175.67 | LossAdj:  0.23649 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     99000 | Loss:    23375.34 | LossAdj:  0.23611 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    100000 | Loss:    23601.83 | LossAdj:  0.23602 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    101000 | Loss:    23809.16 | LossAdj:  0.23573 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    102000 | Loss:    23982.66 | LossAdj:  0.23512 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    103000 | Loss:    24204.59 | LossAdj:  0.23500 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    104000 | Loss:    24402.49 | LossAdj:  0.23464 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    105000 | Loss:    24630.39 | LossAdj:  0.23458 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    106000 | Loss:    24795.04 | LossAdj:  0.23392 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    107000 | Loss:    25011.06 | LossAdj:  0.23375 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    108000 | Loss:    25235.32 | LossAdj:  0.23366 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    109000 | Loss:    25449.76 | LossAdj:  0.23348 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    110000 | Loss:    25627.35 | LossAdj:  0.23298 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    111000 | Loss:    25850.50 | LossAdj:  0.23289 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    112000 | Loss:    26057.97 | LossAdj:  0.23266 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    113000 | Loss:    26260.82 | LossAdj:  0.23240 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    114000 | Loss:    26485.64 | LossAdj:  0.23233 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    115000 | Loss:    26676.44 | LossAdj:  0.23197 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    116000 | Loss:    26887.05 | LossAdj:  0.23178 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    117000 | Loss:    27073.44 | LossAdj:  0.23140 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    118000 | Loss:    27308.63 | LossAdj:  0.23143 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    119000 | Loss:    27538.91 | LossAdj:  0.23142 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    120000 | Loss:    27760.00 | LossAdj:  0.23133 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    121000 | Loss:    27967.90 | LossAdj:  0.23114 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    122000 | Loss:    28166.33 | LossAdj:  0.23087 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    123000 | Loss:    28359.42 | LossAdj:  0.23056 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    124000 | Loss:    28574.40 | LossAdj:  0.23044 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    125000 | Loss:    28788.24 | LossAdj:  0.23031 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    126000 | Loss:    28976.51 | LossAdj:  0.22997 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    127000 | Loss:    29204.45 | LossAdj:  0.22996 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    128000 | Loss:    29413.85 | LossAdj:  0.22980 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    129000 | Loss:    29624.33 | LossAdj:  0.22965 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    130000 | Loss:    29825.74 | LossAdj:  0.22943 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    131000 | Loss:    29995.28 | LossAdj:  0.22897 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    132000 | Loss:    30179.85 | LossAdj:  0.22864 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    133000 | Loss:    30418.59 | LossAdj:  0.22871 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    134000 | Loss:    30629.00 | LossAdj:  0.22857 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    135000 | Loss:    30831.80 | LossAdj:  0.22838 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    136000 | Loss:    31027.20 | LossAdj:  0.22814 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    137000 | Loss:    31248.52 | LossAdj:  0.22809 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    138000 | Loss:    31443.67 | LossAdj:  0.22785 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    139000 | Loss:    31679.40 | LossAdj:  0.22791 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    140000 | Loss:    31873.79 | LossAdj:  0.22767 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    141000 | Loss:    32109.59 | LossAdj:  0.22773 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    142000 | Loss:    32296.49 | LossAdj:  0.22744 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    143000 | Loss:    32513.48 | LossAdj:  0.22737 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    144000 | Loss:    32734.63 | LossAdj:  0.22732 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    145000 | Loss:    32925.14 | LossAdj:  0.22707 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    146000 | Loss:    33115.58 | LossAdj:  0.22682 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    147000 | Loss:    33338.74 | LossAdj:  0.22679 | Time taken:   33 seconds
Epoch:   0 | Training Samples:    148000 | Loss:    33549.00 | LossAdj:  0.22668 | Time taken:   33 seconds
Epoch:   0 | Training Samples:    149000 | Loss:    33746.69 | LossAdj:  0.22649 | Time taken:   33 seconds
Epoch:   0 | Training Samples:    150000 | Loss:    33978.04 | LossAdj:  0.22652 | Time taken:   33 seconds
 --- TRAINING FINISHED IN 33 SECONDS WITH LOSS 0.23 ---
              precision    recall  f1-score   support

           0       0.97      0.95      0.96     45786
           1       0.55      0.63      0.59      4214

    accuracy                           0.93     50000
   macro avg       0.76      0.79      0.77     50000
weighted avg       0.93      0.93      0.93     50000

AUC = 0.902750
Epoch:   0 | Training Samples:      1000 | Loss:      429.08 | LossAdj:  0.42908 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      2000 | Loss:      788.95 | LossAdj:  0.39448 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      3000 | Loss:     1157.35 | LossAdj:  0.38578 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      4000 | Loss:     1479.28 | LossAdj:  0.36982 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      5000 | Loss:     1805.41 | LossAdj:  0.36108 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      6000 | Loss:     2135.81 | LossAdj:  0.35597 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      7000 | Loss:     2488.75 | LossAdj:  0.35554 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      8000 | Loss:     2812.27 | LossAdj:  0.35153 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      9000 | Loss:     3134.12 | LossAdj:  0.34824 | Time taken:    1 seconds
Epoch:   0 | Training Samples:     10000 | Loss:     3467.09 | LossAdj:  0.34671 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     11000 | Loss:     3786.86 | LossAdj:  0.34426 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     12000 | Loss:     4078.00 | LossAdj:  0.33983 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     13000 | Loss:     4413.44 | LossAdj:  0.33950 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     14000 | Loss:     4751.29 | LossAdj:  0.33938 | Time taken:    2 seconds
Epoch:   0 | Training Samples:     15000 | Loss:     5111.37 | LossAdj:  0.34076 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     16000 | Loss:     5435.62 | LossAdj:  0.33973 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     17000 | Loss:     5756.48 | LossAdj:  0.33862 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     18000 | Loss:     6079.64 | LossAdj:  0.33776 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     19000 | Loss:     6398.83 | LossAdj:  0.33678 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     20000 | Loss:     6729.96 | LossAdj:  0.33650 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     21000 | Loss:     7067.80 | LossAdj:  0.33656 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     22000 | Loss:     7378.98 | LossAdj:  0.33541 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     23000 | Loss:     7674.94 | LossAdj:  0.33369 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     24000 | Loss:     7962.76 | LossAdj:  0.33178 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     25000 | Loss:     8281.98 | LossAdj:  0.33128 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     26000 | Loss:     8581.04 | LossAdj:  0.33004 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     27000 | Loss:     8898.03 | LossAdj:  0.32956 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     28000 | Loss:     9240.10 | LossAdj:  0.33000 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     29000 | Loss:     9568.43 | LossAdj:  0.32995 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     30000 | Loss:     9877.80 | LossAdj:  0.32926 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     31000 | Loss:    10166.29 | LossAdj:  0.32794 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     32000 | Loss:    10511.15 | LossAdj:  0.32847 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     33000 | Loss:    10823.15 | LossAdj:  0.32797 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     34000 | Loss:    11143.79 | LossAdj:  0.32776 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     35000 | Loss:    11452.11 | LossAdj:  0.32720 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     36000 | Loss:    11768.27 | LossAdj:  0.32690 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     37000 | Loss:    12077.75 | LossAdj:  0.32643 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     38000 | Loss:    12398.41 | LossAdj:  0.32627 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     39000 | Loss:    12691.67 | LossAdj:  0.32543 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     40000 | Loss:    12975.49 | LossAdj:  0.32439 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     41000 | Loss:    13277.92 | LossAdj:  0.32385 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     42000 | Loss:    13605.36 | LossAdj:  0.32394 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     43000 | Loss:    13926.96 | LossAdj:  0.32388 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     44000 | Loss:    14240.99 | LossAdj:  0.32366 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     45000 | Loss:    14558.51 | LossAdj:  0.32352 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     46000 | Loss:    14889.84 | LossAdj:  0.32369 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     47000 | Loss:    15181.13 | LossAdj:  0.32300 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     48000 | Loss:    15504.28 | LossAdj:  0.32301 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     49000 | Loss:    15796.08 | LossAdj:  0.32237 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     50000 | Loss:    16095.93 | LossAdj:  0.32192 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     51000 | Loss:    16355.95 | LossAdj:  0.32070 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     52000 | Loss:    16652.06 | LossAdj:  0.32023 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     53000 | Loss:    16943.38 | LossAdj:  0.31969 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     54000 | Loss:    17243.89 | LossAdj:  0.31933 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     55000 | Loss:    17532.29 | LossAdj:  0.31877 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     56000 | Loss:    17845.78 | LossAdj:  0.31867 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     57000 | Loss:    18178.84 | LossAdj:  0.31893 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     58000 | Loss:    18477.71 | LossAdj:  0.31858 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     59000 | Loss:    18800.70 | LossAdj:  0.31866 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     60000 | Loss:    19124.40 | LossAdj:  0.31874 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     61000 | Loss:    19422.69 | LossAdj:  0.31840 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     62000 | Loss:    19736.06 | LossAdj:  0.31832 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     63000 | Loss:    20063.13 | LossAdj:  0.31846 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     64000 | Loss:    20373.58 | LossAdj:  0.31834 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     65000 | Loss:    20679.33 | LossAdj:  0.31814 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     66000 | Loss:    20988.07 | LossAdj:  0.31800 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     67000 | Loss:    21318.62 | LossAdj:  0.31819 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     68000 | Loss:    21616.23 | LossAdj:  0.31789 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     69000 | Loss:    21934.97 | LossAdj:  0.31790 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     70000 | Loss:    22262.20 | LossAdj:  0.31803 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     71000 | Loss:    22577.80 | LossAdj:  0.31800 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     72000 | Loss:    22889.76 | LossAdj:  0.31791 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     73000 | Loss:    23204.05 | LossAdj:  0.31786 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     74000 | Loss:    23525.44 | LossAdj:  0.31791 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     75000 | Loss:    23834.34 | LossAdj:  0.31779 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     76000 | Loss:    24148.53 | LossAdj:  0.31774 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     77000 | Loss:    24482.28 | LossAdj:  0.31795 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     78000 | Loss:    24776.62 | LossAdj:  0.31765 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     79000 | Loss:    25074.03 | LossAdj:  0.31739 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     80000 | Loss:    25387.24 | LossAdj:  0.31734 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     81000 | Loss:    25684.22 | LossAdj:  0.31709 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     82000 | Loss:    25979.97 | LossAdj:  0.31683 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     83000 | Loss:    26286.78 | LossAdj:  0.31671 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     84000 | Loss:    26609.69 | LossAdj:  0.31678 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     85000 | Loss:    26927.31 | LossAdj:  0.31679 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     86000 | Loss:    27233.99 | LossAdj:  0.31667 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     87000 | Loss:    27546.79 | LossAdj:  0.31663 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     88000 | Loss:    27868.15 | LossAdj:  0.31668 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     89000 | Loss:    28174.47 | LossAdj:  0.31657 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     90000 | Loss:    28490.26 | LossAdj:  0.31656 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     91000 | Loss:    28807.77 | LossAdj:  0.31657 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     92000 | Loss:    29132.45 | LossAdj:  0.31666 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     93000 | Loss:    29461.66 | LossAdj:  0.31679 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     94000 | Loss:    29770.68 | LossAdj:  0.31671 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     95000 | Loss:    30087.02 | LossAdj:  0.31671 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     96000 | Loss:    30402.71 | LossAdj:  0.31669 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     97000 | Loss:    30704.91 | LossAdj:  0.31655 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     98000 | Loss:    31015.24 | LossAdj:  0.31648 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     99000 | Loss:    31319.42 | LossAdj:  0.31636 | Time taken:   21 seconds
Epoch:   0 | Training Samples:    100000 | Loss:    31641.37 | LossAdj:  0.31641 | Time taken:   21 seconds
Epoch:   0 | Training Samples:    101000 | Loss:    31956.02 | LossAdj:  0.31640 | Time taken:   21 seconds
Epoch:   0 | Training Samples:    102000 | Loss:    32263.43 | LossAdj:  0.31631 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    103000 | Loss:    32573.02 | LossAdj:  0.31624 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    104000 | Loss:    32883.38 | LossAdj:  0.31619 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    105000 | Loss:    33174.57 | LossAdj:  0.31595 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    106000 | Loss:    33476.43 | LossAdj:  0.31582 | Time taken:   22 seconds
Epoch:   0 | Training Samples:    107000 | Loss:    33779.68 | LossAdj:  0.31570 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    108000 | Loss:    34078.84 | LossAdj:  0.31554 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    109000 | Loss:    34390.37 | LossAdj:  0.31551 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    110000 | Loss:    34695.78 | LossAdj:  0.31542 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    111000 | Loss:    34952.37 | LossAdj:  0.31489 | Time taken:   23 seconds
Epoch:   0 | Training Samples:    112000 | Loss:    35258.84 | LossAdj:  0.31481 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    113000 | Loss:    35562.57 | LossAdj:  0.31471 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    114000 | Loss:    35861.13 | LossAdj:  0.31457 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    115000 | Loss:    36165.19 | LossAdj:  0.31448 | Time taken:   24 seconds
Epoch:   0 | Training Samples:    116000 | Loss:    36487.19 | LossAdj:  0.31454 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    117000 | Loss:    36786.02 | LossAdj:  0.31441 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    118000 | Loss:    37107.41 | LossAdj:  0.31447 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    119000 | Loss:    37415.51 | LossAdj:  0.31442 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    120000 | Loss:    37727.66 | LossAdj:  0.31440 | Time taken:   25 seconds
Epoch:   0 | Training Samples:    121000 | Loss:    38070.43 | LossAdj:  0.31463 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    122000 | Loss:    38374.85 | LossAdj:  0.31455 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    123000 | Loss:    38681.90 | LossAdj:  0.31449 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    124000 | Loss:    38974.23 | LossAdj:  0.31431 | Time taken:   26 seconds
Epoch:   0 | Training Samples:    125000 | Loss:    39277.32 | LossAdj:  0.31422 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    126000 | Loss:    39562.93 | LossAdj:  0.31399 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    127000 | Loss:    39889.18 | LossAdj:  0.31409 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    128000 | Loss:    40179.66 | LossAdj:  0.31390 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    129000 | Loss:    40512.26 | LossAdj:  0.31405 | Time taken:   27 seconds
Epoch:   0 | Training Samples:    130000 | Loss:    40818.22 | LossAdj:  0.31399 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    131000 | Loss:    41110.86 | LossAdj:  0.31382 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    132000 | Loss:    41420.47 | LossAdj:  0.31379 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    133000 | Loss:    41740.01 | LossAdj:  0.31383 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    134000 | Loss:    42038.69 | LossAdj:  0.31372 | Time taken:   28 seconds
Epoch:   0 | Training Samples:    135000 | Loss:    42348.12 | LossAdj:  0.31369 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    136000 | Loss:    42648.81 | LossAdj:  0.31359 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    137000 | Loss:    42933.91 | LossAdj:  0.31339 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    138000 | Loss:    43236.28 | LossAdj:  0.31331 | Time taken:   29 seconds
Epoch:   0 | Training Samples:    139000 | Loss:    43523.81 | LossAdj:  0.31312 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    140000 | Loss:    43813.86 | LossAdj:  0.31296 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    141000 | Loss:    44109.54 | LossAdj:  0.31283 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    142000 | Loss:    44400.47 | LossAdj:  0.31268 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    143000 | Loss:    44712.03 | LossAdj:  0.31267 | Time taken:   30 seconds
Epoch:   0 | Training Samples:    144000 | Loss:    45030.82 | LossAdj:  0.31271 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    145000 | Loss:    45318.77 | LossAdj:  0.31254 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    146000 | Loss:    45651.16 | LossAdj:  0.31268 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    147000 | Loss:    45978.55 | LossAdj:  0.31278 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    148000 | Loss:    46277.01 | LossAdj:  0.31268 | Time taken:   31 seconds
Epoch:   0 | Training Samples:    149000 | Loss:    46577.75 | LossAdj:  0.31260 | Time taken:   32 seconds
Epoch:   0 | Training Samples:    150000 | Loss:    46878.62 | LossAdj:  0.31252 | Time taken:   32 seconds
 --- TRAINING FINISHED IN 32 SECONDS WITH LOSS 0.31 ---
              precision    recall  f1-score   support

           0       0.97      0.90      0.93     45786
           1       0.39      0.72      0.51      4214

    accuracy                           0.88     50000
   macro avg       0.68      0.81      0.72     50000
weighted avg       0.92      0.88      0.90     50000

AUC = 0.896821
Epoch:   0 | Training Samples:      1000 | Loss:     1163.22 | LossAdj:  1.16322 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      2000 | Loss:     2053.44 | LossAdj:  1.02672 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      3000 | Loss:     2663.24 | LossAdj:  0.88775 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      4000 | Loss:     3286.72 | LossAdj:  0.82168 | Time taken:    2 seconds
Epoch:   0 | Training Samples:      5000 | Loss:     3864.88 | LossAdj:  0.77298 | Time taken:    2 seconds
Epoch:   0 | Training Samples:      6000 | Loss:     4526.01 | LossAdj:  0.75434 | Time taken:    3 seconds
Epoch:   0 | Training Samples:      7000 | Loss:     5291.94 | LossAdj:  0.75599 | Time taken:    3 seconds
Epoch:   0 | Training Samples:      8000 | Loss:     5929.73 | LossAdj:  0.74122 | Time taken:    4 seconds
Epoch:   0 | Training Samples:      9000 | Loss:     6483.85 | LossAdj:  0.72043 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     10000 | Loss:     6974.19 | LossAdj:  0.69742 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     11000 | Loss:     7289.89 | LossAdj:  0.66272 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     12000 | Loss:     7636.15 | LossAdj:  0.63635 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     13000 | Loss:     8277.91 | LossAdj:  0.63676 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     14000 | Loss:     8882.99 | LossAdj:  0.63450 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     15000 | Loss:     9368.03 | LossAdj:  0.62454 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     16000 | Loss:     9776.12 | LossAdj:  0.61101 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     17000 | Loss:    10064.15 | LossAdj:  0.59201 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     18000 | Loss:    10708.52 | LossAdj:  0.59492 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     19000 | Loss:    11127.11 | LossAdj:  0.58564 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     20000 | Loss:    11731.54 | LossAdj:  0.58658 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     21000 | Loss:    12354.85 | LossAdj:  0.58833 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     22000 | Loss:    12870.19 | LossAdj:  0.58501 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     23000 | Loss:    13204.10 | LossAdj:  0.57409 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     24000 | Loss:    13665.48 | LossAdj:  0.56939 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     25000 | Loss:    14295.83 | LossAdj:  0.57183 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     26000 | Loss:    14782.59 | LossAdj:  0.56856 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     27000 | Loss:    15339.88 | LossAdj:  0.56814 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     28000 | Loss:    15649.23 | LossAdj:  0.55890 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     29000 | Loss:    16180.84 | LossAdj:  0.55796 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     30000 | Loss:    16665.69 | LossAdj:  0.55552 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     31000 | Loss:    17067.87 | LossAdj:  0.55058 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     32000 | Loss:    17657.53 | LossAdj:  0.55180 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     33000 | Loss:    18317.52 | LossAdj:  0.55508 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     34000 | Loss:    18759.91 | LossAdj:  0.55176 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     35000 | Loss:    19290.19 | LossAdj:  0.55115 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     36000 | Loss:    19606.48 | LossAdj:  0.54462 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     37000 | Loss:    20272.33 | LossAdj:  0.54790 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     38000 | Loss:    20671.80 | LossAdj:  0.54399 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     39000 | Loss:    20881.02 | LossAdj:  0.53541 | Time taken:   22 seconds
Epoch:   0 | Training Samples:     40000 | Loss:    21285.34 | LossAdj:  0.53213 | Time taken:   22 seconds
Epoch:   0 | Training Samples:     41000 | Loss:    21719.18 | LossAdj:  0.52974 | Time taken:   23 seconds
Epoch:   0 | Training Samples:     42000 | Loss:    21954.45 | LossAdj:  0.52272 | Time taken:   23 seconds
Epoch:   0 | Training Samples:     43000 | Loss:    22386.33 | LossAdj:  0.52061 | Time taken:   24 seconds
Epoch:   0 | Training Samples:     44000 | Loss:    22803.83 | LossAdj:  0.51827 | Time taken:   24 seconds
Epoch:   0 | Training Samples:     45000 | Loss:    23373.19 | LossAdj:  0.51940 | Time taken:   25 seconds
Epoch:   0 | Training Samples:     46000 | Loss:    23746.28 | LossAdj:  0.51622 | Time taken:   25 seconds
Epoch:   0 | Training Samples:     47000 | Loss:    24077.82 | LossAdj:  0.51229 | Time taken:   26 seconds
Epoch:   0 | Training Samples:     48000 | Loss:    24711.91 | LossAdj:  0.51483 | Time taken:   27 seconds
Epoch:   0 | Training Samples:     49000 | Loss:    25141.45 | LossAdj:  0.51309 | Time taken:   27 seconds
Epoch:   0 | Training Samples:     50000 | Loss:    25519.79 | LossAdj:  0.51040 | Time taken:   28 seconds
Epoch:   0 | Training Samples:     51000 | Loss:    26020.04 | LossAdj:  0.51020 | Time taken:   28 seconds
Epoch:   0 | Training Samples:     52000 | Loss:    26598.91 | LossAdj:  0.51152 | Time taken:   29 seconds
Epoch:   0 | Training Samples:     53000 | Loss:    26978.16 | LossAdj:  0.50902 | Time taken:   29 seconds
Epoch:   0 | Training Samples:     54000 | Loss:    27277.00 | LossAdj:  0.50513 | Time taken:   30 seconds
Epoch:   0 | Training Samples:     55000 | Loss:    27643.82 | LossAdj:  0.50261 | Time taken:   31 seconds
Epoch:   0 | Training Samples:     56000 | Loss:    27997.18 | LossAdj:  0.49995 | Time taken:   31 seconds
Epoch:   0 | Training Samples:     57000 | Loss:    28688.33 | LossAdj:  0.50330 | Time taken:   32 seconds
Epoch:   0 | Training Samples:     58000 | Loss:    29351.87 | LossAdj:  0.50607 | Time taken:   32 seconds
Epoch:   0 | Training Samples:     59000 | Loss:    29902.63 | LossAdj:  0.50682 | Time taken:   33 seconds
Epoch:   0 | Training Samples:     60000 | Loss:    30281.31 | LossAdj:  0.50469 | Time taken:   33 seconds
Epoch:   0 | Training Samples:     61000 | Loss:    30690.72 | LossAdj:  0.50313 | Time taken:   34 seconds
Epoch:   0 | Training Samples:     62000 | Loss:    31035.57 | LossAdj:  0.50057 | Time taken:   35 seconds
Epoch:   0 | Training Samples:     63000 | Loss:    31442.41 | LossAdj:  0.49909 | Time taken:   35 seconds
Epoch:   0 | Training Samples:     64000 | Loss:    32065.53 | LossAdj:  0.50102 | Time taken:   36 seconds
Epoch:   0 | Training Samples:     65000 | Loss:    32396.35 | LossAdj:  0.49841 | Time taken:   36 seconds
Epoch:   0 | Training Samples:     66000 | Loss:    32811.30 | LossAdj:  0.49714 | Time taken:   37 seconds
Epoch:   0 | Training Samples:     67000 | Loss:    33237.75 | LossAdj:  0.49609 | Time taken:   38 seconds
Epoch:   0 | Training Samples:     68000 | Loss:    33690.42 | LossAdj:  0.49545 | Time taken:   38 seconds
Epoch:   0 | Training Samples:     69000 | Loss:    34015.70 | LossAdj:  0.49298 | Time taken:   39 seconds
Epoch:   0 | Training Samples:     70000 | Loss:    34604.21 | LossAdj:  0.49435 | Time taken:   39 seconds
Epoch:   0 | Training Samples:     71000 | Loss:    34910.12 | LossAdj:  0.49169 | Time taken:   40 seconds
Epoch:   0 | Training Samples:     72000 | Loss:    35370.63 | LossAdj:  0.49126 | Time taken:   41 seconds
Epoch:   0 | Training Samples:     73000 | Loss:    35911.17 | LossAdj:  0.49193 | Time taken:   41 seconds
Epoch:   0 | Training Samples:     74000 | Loss:    36315.88 | LossAdj:  0.49076 | Time taken:   42 seconds
Epoch:   0 | Training Samples:     75000 | Loss:    36748.56 | LossAdj:  0.48998 | Time taken:   42 seconds
Epoch:   0 | Training Samples:     76000 | Loss:    37202.95 | LossAdj:  0.48951 | Time taken:   43 seconds
Epoch:   0 | Training Samples:     77000 | Loss:    37780.98 | LossAdj:  0.49066 | Time taken:   44 seconds
Epoch:   0 | Training Samples:     78000 | Loss:    38210.73 | LossAdj:  0.48988 | Time taken:   44 seconds
Epoch:   0 | Training Samples:     79000 | Loss:    38659.35 | LossAdj:  0.48936 | Time taken:   45 seconds
Epoch:   0 | Training Samples:     80000 | Loss:    39088.99 | LossAdj:  0.48861 | Time taken:   45 seconds
Epoch:   0 | Training Samples:     81000 | Loss:    39425.74 | LossAdj:  0.48674 | Time taken:   46 seconds
Epoch:   0 | Training Samples:     82000 | Loss:    39677.90 | LossAdj:  0.48388 | Time taken:   47 seconds
Epoch:   0 | Training Samples:     83000 | Loss:    40042.14 | LossAdj:  0.48244 | Time taken:   47 seconds
Epoch:   0 | Training Samples:     84000 | Loss:    40479.19 | LossAdj:  0.48190 | Time taken:   48 seconds
Epoch:   0 | Training Samples:     85000 | Loss:    41037.21 | LossAdj:  0.48279 | Time taken:   48 seconds
Epoch:   0 | Training Samples:     86000 | Loss:    41496.24 | LossAdj:  0.48251 | Time taken:   49 seconds
Epoch:   0 | Training Samples:     87000 | Loss:    42045.46 | LossAdj:  0.48328 | Time taken:   49 seconds
Epoch:   0 | Training Samples:     88000 | Loss:    42622.88 | LossAdj:  0.48435 | Time taken:   50 seconds
Epoch:   0 | Training Samples:     89000 | Loss:    43226.97 | LossAdj:  0.48570 | Time taken:   51 seconds
Epoch:   0 | Training Samples:     90000 | Loss:    43817.15 | LossAdj:  0.48686 | Time taken:   51 seconds
Epoch:   0 | Training Samples:     91000 | Loss:    44218.01 | LossAdj:  0.48591 | Time taken:   52 seconds
Epoch:   0 | Training Samples:     92000 | Loss:    44694.71 | LossAdj:  0.48581 | Time taken:   52 seconds
Epoch:   0 | Training Samples:     93000 | Loss:    44980.07 | LossAdj:  0.48366 | Time taken:   53 seconds
Epoch:   0 | Training Samples:     94000 | Loss:    45257.12 | LossAdj:  0.48146 | Time taken:   53 seconds
Epoch:   0 | Training Samples:     95000 | Loss:    45659.86 | LossAdj:  0.48063 | Time taken:   54 seconds
Epoch:   0 | Training Samples:     96000 | Loss:    46299.64 | LossAdj:  0.48229 | Time taken:   55 seconds
Epoch:   0 | Training Samples:     97000 | Loss:    46739.96 | LossAdj:  0.48186 | Time taken:   55 seconds
Epoch:   0 | Training Samples:     98000 | Loss:    47165.04 | LossAdj:  0.48128 | Time taken:   56 seconds
Epoch:   0 | Training Samples:     99000 | Loss:    47482.38 | LossAdj:  0.47962 | Time taken:   56 seconds
Epoch:   0 | Training Samples:    100000 | Loss:    47680.76 | LossAdj:  0.47681 | Time taken:   57 seconds
Epoch:   0 | Training Samples:    101000 | Loss:    48234.33 | LossAdj:  0.47757 | Time taken:   57 seconds
Epoch:   0 | Training Samples:    102000 | Loss:    48709.22 | LossAdj:  0.47754 | Time taken:   58 seconds
Epoch:   0 | Training Samples:    103000 | Loss:    49037.14 | LossAdj:  0.47609 | Time taken:   59 seconds
Epoch:   0 | Training Samples:    104000 | Loss:    49449.75 | LossAdj:  0.47548 | Time taken:   59 seconds
Epoch:   0 | Training Samples:    105000 | Loss:    49803.88 | LossAdj:  0.47432 | Time taken:   60 seconds
Epoch:   0 | Training Samples:    106000 | Loss:    50112.19 | LossAdj:  0.47276 | Time taken:   60 seconds
Epoch:   0 | Training Samples:    107000 | Loss:    50649.39 | LossAdj:  0.47336 | Time taken:   61 seconds
Epoch:   0 | Training Samples:    108000 | Loss:    51156.93 | LossAdj:  0.47368 | Time taken:   61 seconds
Epoch:   0 | Training Samples:    109000 | Loss:    51592.43 | LossAdj:  0.47333 | Time taken:   62 seconds
Epoch:   0 | Training Samples:    110000 | Loss:    51954.63 | LossAdj:  0.47231 | Time taken:   63 seconds
Epoch:   0 | Training Samples:    111000 | Loss:    52335.31 | LossAdj:  0.47149 | Time taken:   63 seconds
Epoch:   0 | Training Samples:    112000 | Loss:    52767.08 | LossAdj:  0.47113 | Time taken:   64 seconds
Epoch:   0 | Training Samples:    113000 | Loss:    53203.69 | LossAdj:  0.47083 | Time taken:   64 seconds
Epoch:   0 | Training Samples:    114000 | Loss:    53480.39 | LossAdj:  0.46913 | Time taken:   65 seconds
Epoch:   0 | Training Samples:    115000 | Loss:    53911.85 | LossAdj:  0.46880 | Time taken:   65 seconds
Epoch:   0 | Training Samples:    116000 | Loss:    54481.56 | LossAdj:  0.46967 | Time taken:   66 seconds
Epoch:   0 | Training Samples:    117000 | Loss:    54888.32 | LossAdj:  0.46913 | Time taken:   67 seconds
Epoch:   0 | Training Samples:    118000 | Loss:    55293.53 | LossAdj:  0.46859 | Time taken:   67 seconds
Epoch:   0 | Training Samples:    119000 | Loss:    55767.51 | LossAdj:  0.46863 | Time taken:   68 seconds
Epoch:   0 | Training Samples:    120000 | Loss:    56412.18 | LossAdj:  0.47010 | Time taken:   68 seconds
Epoch:   0 | Training Samples:    121000 | Loss:    56783.45 | LossAdj:  0.46928 | Time taken:   69 seconds
Epoch:   0 | Training Samples:    122000 | Loss:    57315.33 | LossAdj:  0.46980 | Time taken:   70 seconds
Epoch:   0 | Training Samples:    123000 | Loss:    57801.33 | LossAdj:  0.46993 | Time taken:   70 seconds
Epoch:   0 | Training Samples:    124000 | Loss:    58230.60 | LossAdj:  0.46960 | Time taken:   71 seconds
Epoch:   0 | Training Samples:    125000 | Loss:    58561.44 | LossAdj:  0.46849 | Time taken:   71 seconds
Epoch:   0 | Training Samples:    126000 | Loss:    59023.23 | LossAdj:  0.46844 | Time taken:   72 seconds
Epoch:   0 | Training Samples:    127000 | Loss:    59465.08 | LossAdj:  0.46823 | Time taken:   73 seconds
Epoch:   0 | Training Samples:    128000 | Loss:    60033.85 | LossAdj:  0.46901 | Time taken:   73 seconds
Epoch:   0 | Training Samples:    129000 | Loss:    60341.89 | LossAdj:  0.46777 | Time taken:   74 seconds
Epoch:   0 | Training Samples:    130000 | Loss:    60526.91 | LossAdj:  0.46559 | Time taken:   74 seconds
Epoch:   0 | Training Samples:    131000 | Loss:    60888.07 | LossAdj:  0.46479 | Time taken:   75 seconds
Epoch:   0 | Training Samples:    132000 | Loss:    61388.89 | LossAdj:  0.46507 | Time taken:   75 seconds
Epoch:   0 | Training Samples:    133000 | Loss:    61743.22 | LossAdj:  0.46423 | Time taken:   76 seconds
Epoch:   0 | Training Samples:    134000 | Loss:    62132.27 | LossAdj:  0.46367 | Time taken:   77 seconds
Epoch:   0 | Training Samples:    135000 | Loss:    62711.31 | LossAdj:  0.46453 | Time taken:   77 seconds
Epoch:   0 | Training Samples:    136000 | Loss:    63204.01 | LossAdj:  0.46474 | Time taken:   78 seconds
Epoch:   0 | Training Samples:    137000 | Loss:    63495.84 | LossAdj:  0.46347 | Time taken:   78 seconds
Epoch:   0 | Training Samples:    138000 | Loss:    63965.98 | LossAdj:  0.46352 | Time taken:   79 seconds
Epoch:   0 | Training Samples:    139000 | Loss:    64398.76 | LossAdj:  0.46330 | Time taken:   79 seconds
Epoch:   0 | Training Samples:    140000 | Loss:    64865.07 | LossAdj:  0.46332 | Time taken:   80 seconds
Epoch:   0 | Training Samples:    141000 | Loss:    65246.32 | LossAdj:  0.46274 | Time taken:   80 seconds
Epoch:   0 | Training Samples:    142000 | Loss:    65598.68 | LossAdj:  0.46196 | Time taken:   81 seconds
Epoch:   0 | Training Samples:    143000 | Loss:    65900.02 | LossAdj:  0.46084 | Time taken:   82 seconds
Epoch:   0 | Training Samples:    144000 | Loss:    66483.19 | LossAdj:  0.46169 | Time taken:   82 seconds
Epoch:   0 | Training Samples:    145000 | Loss:    67193.78 | LossAdj:  0.46341 | Time taken:   83 seconds
Epoch:   0 | Training Samples:    146000 | Loss:    67543.41 | LossAdj:  0.46263 | Time taken:   83 seconds
Epoch:   0 | Training Samples:    147000 | Loss:    67869.03 | LossAdj:  0.46169 | Time taken:   84 seconds
Epoch:   0 | Training Samples:    148000 | Loss:    68402.78 | LossAdj:  0.46218 | Time taken:   84 seconds
Epoch:   0 | Training Samples:    149000 | Loss:    68961.32 | LossAdj:  0.46283 | Time taken:   85 seconds
Epoch:   0 | Training Samples:    150000 | Loss:    69501.21 | LossAdj:  0.46334 | Time taken:   85 seconds
 --- TRAINING FINISHED IN 85 SECONDS WITH LOSS 0.46 ---
              precision    recall  f1-score   support

           0       0.99      0.96      0.97     45786
           1       0.68      0.88      0.77      4214

    accuracy                           0.95     50000
   macro avg       0.83      0.92      0.87     50000
weighted avg       0.96      0.95      0.96     50000

AUC = 0.963656
Epoch:   0 | Training Samples:      1000 | Loss:     1257.57 | LossAdj:  1.25757 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      2000 | Loss:     2112.75 | LossAdj:  1.05637 | Time taken:    0 seconds
Epoch:   0 | Training Samples:      3000 | Loss:     2993.43 | LossAdj:  0.99781 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      4000 | Loss:     3922.74 | LossAdj:  0.98068 | Time taken:    1 seconds
Epoch:   0 | Training Samples:      5000 | Loss:     5088.32 | LossAdj:  1.01766 | Time taken:    2 seconds
Epoch:   0 | Training Samples:      6000 | Loss:     5995.98 | LossAdj:  0.99933 | Time taken:    2 seconds
Epoch:   0 | Training Samples:      7000 | Loss:     7110.94 | LossAdj:  1.01585 | Time taken:    3 seconds
Epoch:   0 | Training Samples:      8000 | Loss:     8156.98 | LossAdj:  1.01962 | Time taken:    3 seconds
Epoch:   0 | Training Samples:      9000 | Loss:     9001.04 | LossAdj:  1.00012 | Time taken:    3 seconds
Epoch:   0 | Training Samples:     10000 | Loss:    10078.24 | LossAdj:  1.00782 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     11000 | Loss:    11177.21 | LossAdj:  1.01611 | Time taken:    4 seconds
Epoch:   0 | Training Samples:     12000 | Loss:    12171.60 | LossAdj:  1.01430 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     13000 | Loss:    13394.17 | LossAdj:  1.03032 | Time taken:    5 seconds
Epoch:   0 | Training Samples:     14000 | Loss:    14323.12 | LossAdj:  1.02308 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     15000 | Loss:    14942.94 | LossAdj:  0.99620 | Time taken:    6 seconds
Epoch:   0 | Training Samples:     16000 | Loss:    16090.88 | LossAdj:  1.00568 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     17000 | Loss:    16988.05 | LossAdj:  0.99930 | Time taken:    7 seconds
Epoch:   0 | Training Samples:     18000 | Loss:    18004.15 | LossAdj:  1.00023 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     19000 | Loss:    18904.84 | LossAdj:  0.99499 | Time taken:    8 seconds
Epoch:   0 | Training Samples:     20000 | Loss:    19981.50 | LossAdj:  0.99908 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     21000 | Loss:    21207.77 | LossAdj:  1.00989 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     22000 | Loss:    22482.16 | LossAdj:  1.02192 | Time taken:    9 seconds
Epoch:   0 | Training Samples:     23000 | Loss:    23362.86 | LossAdj:  1.01578 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     24000 | Loss:    24191.96 | LossAdj:  1.00800 | Time taken:   10 seconds
Epoch:   0 | Training Samples:     25000 | Loss:    24924.61 | LossAdj:  0.99698 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     26000 | Loss:    26015.79 | LossAdj:  1.00061 | Time taken:   11 seconds
Epoch:   0 | Training Samples:     27000 | Loss:    26783.98 | LossAdj:  0.99200 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     28000 | Loss:    27646.95 | LossAdj:  0.98739 | Time taken:   12 seconds
Epoch:   0 | Training Samples:     29000 | Loss:    28376.89 | LossAdj:  0.97851 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     30000 | Loss:    29228.78 | LossAdj:  0.97429 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     31000 | Loss:    30210.54 | LossAdj:  0.97453 | Time taken:   13 seconds
Epoch:   0 | Training Samples:     32000 | Loss:    30822.37 | LossAdj:  0.96320 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     33000 | Loss:    32029.66 | LossAdj:  0.97060 | Time taken:   14 seconds
Epoch:   0 | Training Samples:     34000 | Loss:    33289.04 | LossAdj:  0.97909 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     35000 | Loss:    34255.27 | LossAdj:  0.97872 | Time taken:   15 seconds
Epoch:   0 | Training Samples:     36000 | Loss:    35003.99 | LossAdj:  0.97233 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     37000 | Loss:    35706.04 | LossAdj:  0.96503 | Time taken:   16 seconds
Epoch:   0 | Training Samples:     38000 | Loss:    36680.91 | LossAdj:  0.96529 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     39000 | Loss:    37258.07 | LossAdj:  0.95534 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     40000 | Loss:    37940.05 | LossAdj:  0.94850 | Time taken:   17 seconds
Epoch:   0 | Training Samples:     41000 | Loss:    38860.91 | LossAdj:  0.94783 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     42000 | Loss:    39667.87 | LossAdj:  0.94447 | Time taken:   18 seconds
Epoch:   0 | Training Samples:     43000 | Loss:    40426.38 | LossAdj:  0.94015 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     44000 | Loss:    41325.41 | LossAdj:  0.93921 | Time taken:   19 seconds
Epoch:   0 | Training Samples:     45000 | Loss:    42282.13 | LossAdj:  0.93960 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     46000 | Loss:    43045.49 | LossAdj:  0.93577 | Time taken:   20 seconds
Epoch:   0 | Training Samples:     47000 | Loss:    44070.65 | LossAdj:  0.93767 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     48000 | Loss:    45305.59 | LossAdj:  0.94387 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     49000 | Loss:    46459.40 | LossAdj:  0.94815 | Time taken:   21 seconds
Epoch:   0 | Training Samples:     50000 | Loss:    47507.75 | LossAdj:  0.95015 | Time taken:   22 seconds
Epoch:   0 | Training Samples:     51000 | Loss:    48207.39 | LossAdj:  0.94524 | Time taken:   22 seconds
Epoch:   0 | Training Samples:     52000 | Loss:    48813.61 | LossAdj:  0.93872 | Time taken:   23 seconds
Epoch:   0 | Training Samples:     53000 | Loss:    49551.49 | LossAdj:  0.93493 | Time taken:   23 seconds
Epoch:   0 | Training Samples:     54000 | Loss:    50318.73 | LossAdj:  0.93183 | Time taken:   24 seconds
Epoch:   0 | Training Samples:     55000 | Loss:    51146.89 | LossAdj:  0.92994 | Time taken:   24 seconds
Epoch:   0 | Training Samples:     56000 | Loss:    52061.12 | LossAdj:  0.92966 | Time taken:   24 seconds
Epoch:   0 | Training Samples:     57000 | Loss:    52705.46 | LossAdj:  0.92466 | Time taken:   25 seconds
Epoch:   0 | Training Samples:     58000 | Loss:    53390.88 | LossAdj:  0.92053 | Time taken:   25 seconds
Epoch:   0 | Training Samples:     59000 | Loss:    54059.54 | LossAdj:  0.91626 | Time taken:   26 seconds
Epoch:   0 | Training Samples:     60000 | Loss:    55178.80 | LossAdj:  0.91965 | Time taken:   26 seconds
Epoch:   0 | Training Samples:     61000 | Loss:    55870.49 | LossAdj:  0.91591 | Time taken:   27 seconds
Epoch:   0 | Training Samples:     62000 | Loss:    56644.42 | LossAdj:  0.91362 | Time taken:   27 seconds
Epoch:   0 | Training Samples:     63000 | Loss:    57705.42 | LossAdj:  0.91596 | Time taken:   28 seconds
Epoch:   0 | Training Samples:     64000 | Loss:    58970.33 | LossAdj:  0.92141 | Time taken:   28 seconds
Epoch:   0 | Training Samples:     65000 | Loss:    60195.57 | LossAdj:  0.92609 | Time taken:   28 seconds
Epoch:   0 | Training Samples:     66000 | Loss:    61377.78 | LossAdj:  0.92997 | Time taken:   29 seconds
Epoch:   0 | Training Samples:     67000 | Loss:    62111.35 | LossAdj:  0.92704 | Time taken:   29 seconds
Epoch:   0 | Training Samples:     68000 | Loss:    63504.42 | LossAdj:  0.93389 | Time taken:   30 seconds
Epoch:   0 | Training Samples:     69000 | Loss:    64852.09 | LossAdj:  0.93989 | Time taken:   30 seconds
Epoch:   0 | Training Samples:     70000 | Loss:    65601.76 | LossAdj:  0.93717 | Time taken:   31 seconds
Epoch:   0 | Training Samples:     71000 | Loss:    66242.42 | LossAdj:  0.93299 | Time taken:   31 seconds
Epoch:   0 | Training Samples:     72000 | Loss:    66937.99 | LossAdj:  0.92969 | Time taken:   31 seconds
Epoch:   0 | Training Samples:     73000 | Loss:    68138.61 | LossAdj:  0.93341 | Time taken:   32 seconds
Epoch:   0 | Training Samples:     74000 | Loss:    68886.27 | LossAdj:  0.93090 | Time taken:   32 seconds
Epoch:   0 | Training Samples:     75000 | Loss:    69900.55 | LossAdj:  0.93201 | Time taken:   33 seconds
Epoch:   0 | Training Samples:     76000 | Loss:    70842.98 | LossAdj:  0.93214 | Time taken:   33 seconds
Epoch:   0 | Training Samples:     77000 | Loss:    71483.82 | LossAdj:  0.92836 | Time taken:   34 seconds
Epoch:   0 | Training Samples:     78000 | Loss:    72154.74 | LossAdj:  0.92506 | Time taken:   34 seconds
Epoch:   0 | Training Samples:     79000 | Loss:    73012.41 | LossAdj:  0.92421 | Time taken:   34 seconds
Epoch:   0 | Training Samples:     80000 | Loss:    74440.91 | LossAdj:  0.93051 | Time taken:   35 seconds
Epoch:   0 | Training Samples:     81000 | Loss:    75418.48 | LossAdj:  0.93109 | Time taken:   35 seconds
Epoch:   0 | Training Samples:     82000 | Loss:    76294.89 | LossAdj:  0.93043 | Time taken:   36 seconds
Epoch:   0 | Training Samples:     83000 | Loss:    77157.43 | LossAdj:  0.92961 | Time taken:   36 seconds
Epoch:   0 | Training Samples:     84000 | Loss:    77970.58 | LossAdj:  0.92822 | Time taken:   37 seconds
Epoch:   0 | Training Samples:     85000 | Loss:    78426.28 | LossAdj:  0.92266 | Time taken:   37 seconds
Epoch:   0 | Training Samples:     86000 | Loss:    79520.20 | LossAdj:  0.92465 | Time taken:   37 seconds
Epoch:   0 | Training Samples:     87000 | Loss:    80307.06 | LossAdj:  0.92307 | Time taken:   38 seconds
Epoch:   0 | Training Samples:     88000 | Loss:    80786.82 | LossAdj:  0.91803 | Time taken:   38 seconds
Epoch:   0 | Training Samples:     89000 | Loss:    81672.57 | LossAdj:  0.91767 | Time taken:   39 seconds
Epoch:   0 | Training Samples:     90000 | Loss:    83088.54 | LossAdj:  0.92321 | Time taken:   39 seconds
Epoch:   0 | Training Samples:     91000 | Loss:    84763.46 | LossAdj:  0.93147 | Time taken:   40 seconds
Epoch:   0 | Training Samples:     92000 | Loss:    85629.42 | LossAdj:  0.93075 | Time taken:   40 seconds
Epoch:   0 | Training Samples:     93000 | Loss:    86275.04 | LossAdj:  0.92769 | Time taken:   40 seconds
Epoch:   0 | Training Samples:     94000 | Loss:    86918.13 | LossAdj:  0.92466 | Time taken:   41 seconds
Epoch:   0 | Training Samples:     95000 | Loss:    87656.31 | LossAdj:  0.92270 | Time taken:   41 seconds
Epoch:   0 | Training Samples:     96000 | Loss:    88541.03 | LossAdj:  0.92230 | Time taken:   42 seconds
Epoch:   0 | Training Samples:     97000 | Loss:    89605.20 | LossAdj:  0.92376 | Time taken:   42 seconds
Epoch:   0 | Training Samples:     98000 | Loss:    90917.31 | LossAdj:  0.92773 | Time taken:   42 seconds
Epoch:   0 | Training Samples:     99000 | Loss:    91771.78 | LossAdj:  0.92699 | Time taken:   43 seconds
Epoch:   0 | Training Samples:    100000 | Loss:    92744.42 | LossAdj:  0.92744 | Time taken:   43 seconds
Epoch:   0 | Training Samples:    101000 | Loss:    93969.04 | LossAdj:  0.93039 | Time taken:   44 seconds
Epoch:   0 | Training Samples:    102000 | Loss:    94463.27 | LossAdj:  0.92611 | Time taken:   44 seconds
Epoch:   0 | Training Samples:    103000 | Loss:    95752.45 | LossAdj:  0.92964 | Time taken:   45 seconds
Epoch:   0 | Training Samples:    104000 | Loss:    96390.35 | LossAdj:  0.92683 | Time taken:   45 seconds
Epoch:   0 | Training Samples:    105000 | Loss:    97190.71 | LossAdj:  0.92563 | Time taken:   45 seconds
Epoch:   0 | Training Samples:    106000 | Loss:    98215.18 | LossAdj:  0.92656 | Time taken:   46 seconds
Epoch:   0 | Training Samples:    107000 | Loss:    98900.67 | LossAdj:  0.92431 | Time taken:   46 seconds
Epoch:   0 | Training Samples:    108000 | Loss:    99735.78 | LossAdj:  0.92348 | Time taken:   47 seconds
Epoch:   0 | Training Samples:    109000 | Loss:   101027.22 | LossAdj:  0.92686 | Time taken:   47 seconds
Epoch:   0 | Training Samples:    110000 | Loss:   101753.20 | LossAdj:  0.92503 | Time taken:   48 seconds
Epoch:   0 | Training Samples:    111000 | Loss:   102688.48 | LossAdj:  0.92512 | Time taken:   48 seconds
Epoch:   0 | Training Samples:    112000 | Loss:   103524.09 | LossAdj:  0.92432 | Time taken:   49 seconds
Epoch:   0 | Training Samples:    113000 | Loss:   104823.08 | LossAdj:  0.92764 | Time taken:   49 seconds
Epoch:   0 | Training Samples:    114000 | Loss:   105424.51 | LossAdj:  0.92478 | Time taken:   49 seconds
Epoch:   0 | Training Samples:    115000 | Loss:   106426.80 | LossAdj:  0.92545 | Time taken:   50 seconds
Epoch:   0 | Training Samples:    116000 | Loss:   107188.28 | LossAdj:  0.92404 | Time taken:   50 seconds
Epoch:   0 | Training Samples:    117000 | Loss:   108603.67 | LossAdj:  0.92824 | Time taken:   51 seconds
Epoch:   0 | Training Samples:    118000 | Loss:   109673.32 | LossAdj:  0.92943 | Time taken:   51 seconds
Epoch:   0 | Training Samples:    119000 | Loss:   110869.72 | LossAdj:  0.93168 | Time taken:   52 seconds
Epoch:   0 | Training Samples:    120000 | Loss:   111506.35 | LossAdj:  0.92922 | Time taken:   52 seconds
Epoch:   0 | Training Samples:    121000 | Loss:   112116.66 | LossAdj:  0.92658 | Time taken:   53 seconds
Epoch:   0 | Training Samples:    122000 | Loss:   112906.72 | LossAdj:  0.92546 | Time taken:   53 seconds
Epoch:   0 | Training Samples:    123000 | Loss:   114101.98 | LossAdj:  0.92766 | Time taken:   54 seconds
Epoch:   0 | Training Samples:    124000 | Loss:   115055.00 | LossAdj:  0.92786 | Time taken:   54 seconds
Epoch:   0 | Training Samples:    125000 | Loss:   116074.96 | LossAdj:  0.92860 | Time taken:   54 seconds
Epoch:   0 | Training Samples:    126000 | Loss:   116790.69 | LossAdj:  0.92691 | Time taken:   55 seconds
Epoch:   0 | Training Samples:    127000 | Loss:   117436.62 | LossAdj:  0.92470 | Time taken:   55 seconds
Epoch:   0 | Training Samples:    128000 | Loss:   118342.75 | LossAdj:  0.92455 | Time taken:   56 seconds
Epoch:   0 | Training Samples:    129000 | Loss:   119441.61 | LossAdj:  0.92590 | Time taken:   56 seconds
Epoch:   0 | Training Samples:    130000 | Loss:   120179.34 | LossAdj:  0.92446 | Time taken:   57 seconds
Epoch:   0 | Training Samples:    131000 | Loss:   120722.99 | LossAdj:  0.92155 | Time taken:   57 seconds
Epoch:   0 | Training Samples:    132000 | Loss:   121762.82 | LossAdj:  0.92245 | Time taken:   57 seconds
Epoch:   0 | Training Samples:    133000 | Loss:   123170.46 | LossAdj:  0.92609 | Time taken:   58 seconds
Epoch:   0 | Training Samples:    134000 | Loss:   123758.02 | LossAdj:  0.92357 | Time taken:   58 seconds
Epoch:   0 | Training Samples:    135000 | Loss:   125366.03 | LossAdj:  0.92864 | Time taken:   59 seconds
Epoch:   0 | Training Samples:    136000 | Loss:   125886.07 | LossAdj:  0.92563 | Time taken:   59 seconds
Epoch:   0 | Training Samples:    137000 | Loss:   127142.53 | LossAdj:  0.92805 | Time taken:   60 seconds
Epoch:   0 | Training Samples:    138000 | Loss:   127784.96 | LossAdj:  0.92598 | Time taken:   60 seconds
Epoch:   0 | Training Samples:    139000 | Loss:   128407.45 | LossAdj:  0.92379 | Time taken:   60 seconds
Epoch:   0 | Training Samples:    140000 | Loss:   129070.45 | LossAdj:  0.92193 | Time taken:   61 seconds
Epoch:   0 | Training Samples:    141000 | Loss:   129857.51 | LossAdj:  0.92098 | Time taken:   61 seconds
Epoch:   0 | Training Samples:    142000 | Loss:   131083.36 | LossAdj:  0.92312 | Time taken:   62 seconds
Epoch:   0 | Training Samples:    143000 | Loss:   131600.55 | LossAdj:  0.92028 | Time taken:   62 seconds
Epoch:   0 | Training Samples:    144000 | Loss:   132075.63 | LossAdj:  0.91719 | Time taken:   63 seconds
Epoch:   0 | Training Samples:    145000 | Loss:   133875.26 | LossAdj:  0.92328 | Time taken:   63 seconds
Epoch:   0 | Training Samples:    146000 | Loss:   135101.30 | LossAdj:  0.92535 | Time taken:   63 seconds
Epoch:   0 | Training Samples:    147000 | Loss:   136453.21 | LossAdj:  0.92825 | Time taken:   64 seconds
Epoch:   0 | Training Samples:    148000 | Loss:   137657.81 | LossAdj:  0.93012 | Time taken:   64 seconds
Epoch:   0 | Training Samples:    149000 | Loss:   138492.22 | LossAdj:  0.92948 | Time taken:   65 seconds
Epoch:   0 | Training Samples:    150000 | Loss:   139432.42 | LossAdj:  0.92955 | Time taken:   65 seconds
 --- TRAINING FINISHED IN 65 SECONDS WITH LOSS 0.93 ---
              precision    recall  f1-score   support

           0       0.99      0.97      0.98     45786
           1       0.72      0.84      0.78      4214

    accuracy                           0.96     50000
   macro avg       0.85      0.91      0.88     50000
weighted avg       0.96      0.96      0.96     50000

AUC = 0.955793

In [ ]: