In [5]:
import numpy as np
import pprint
import sys
if "../" not in sys.path:
  sys.path.append("../") 
from lib.envs.gridworld import GridworldEnv

In [6]:
pp = pprint.PrettyPrinter(indent=2)
env = GridworldEnv()

In [7]:
# Taken from Policy Evaluation Exercise!

def policy_eval(policy, env, discount_factor=1.0, theta=0.00001):
    """
    Evaluate a policy given an environment and a full description of the environment's dynamics.
    
    Args:
        policy: [S, A] shaped matrix representing the policy.
        env: OpenAI env. env.P represents the transition probabilities of the environment.
            env.P[s][a] is a (prob, next_state, reward, done) tuple.
        theta: We stop evaluation one our value function change is less than theta for all states.
        discount_factor: lambda discount factor.
    
    Returns:
        Vector of length env.nS representing the value function.
    """
    # Start with a random (all 0) value function
    V = np.zeros(env.nS)
    while True:
        delta = 0
        # For each state, perform a "full backup"
        for s in range(env.nS):
            v = 0
            # Look at the possible next actions
            for a, action_prob in enumerate(policy[s]):
                # For each action, look at the possible next states...
                for  prob, next_state, reward, done in env.P[s][a]:
                    # Calculate the expected value
                    v += action_prob * prob * (reward + discount_factor * V[next_state])
            # How much our value function changed (across any states)
            delta = max(delta, np.abs(v - V[s]))
            V[s] = v
        # Stop evaluating once our value function change is below a threshold
        if delta < theta:
            break
    return np.array(V)

In [13]:
def policy_improvement(env, policy_eval_fn=policy_eval, discount_factor=1.0):
    """
    Policy Improvement Algorithm. Iteratively evaluates and improves a policy
    until an optimal policy is found.
    
    Args:
        env: The OpenAI envrionment.
        policy_eval_fn: Policy Evaluation function that takes 3 arguments:
            policy, env, discount_factor.
        discount_factor: Lambda discount factor.
        
    Returns:
        A tuple (policy, V). 
        policy is the optimal policy, a matrix of shape [S, A] where each state s
        contains a valid probability distribution over actions.
        V is the value function for the optimal policy.
        
    """
    # Start with a random policy
    policy = np.ones([env.nS, env.nA]) / env.nA
    
    while True:
        # Implement this!
        break
    
    return policy, np.zeros(env.nS)

In [14]:
policy, v = policy_improvement(env)
print("Policy Probability Distribution:")
print(policy)
print("")

print("Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):")
print(np.reshape(np.argmax(policy, axis=1), env.shape))
print("")

print("Value Function:")
print(v)
print("")

print("Reshaped Grid Value Function:")
print(v.reshape(env.shape))
print("")


Policy Probability Distribution:
[[ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]
 [ 0.25  0.25  0.25  0.25]]

Reshaped Grid Policy (0=up, 1=right, 2=down, 3=left):
[[0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]
 [0 0 0 0]]

Value Function:
[ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]

Reshaped Grid Value Function:
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]


In [15]:
# Test the value function
expected_v = np.array([ 0, -1, -2, -3, -1, -2, -3, -2, -2, -3, -2, -1, -3, -2, -1,  0])
np.testing.assert_array_almost_equal(v, expected_v, decimal=2)


---------------------------------------------------------------------------
AssertionError                            Traceback (most recent call last)
<ipython-input-15-55581f8eb5c9> in <module>()
      1 # Test the value function
      2 expected_v = np.array([ 0, -1, -2, -3, -1, -2, -3, -2, -2, -3, -2, -1, -3, -2, -1,  0])
----> 3 np.testing.assert_array_almost_equal(v, expected_v, decimal=2)

/Users/dennybritz/venvs/tf/lib/python3.5/site-packages/numpy/testing/utils.py in assert_array_almost_equal(x, y, decimal, err_msg, verbose)
    914     assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
    915              header=('Arrays are not almost equal to %d decimals' % decimal),
--> 916              precision=decimal)
    917 
    918 

/Users/dennybritz/venvs/tf/lib/python3.5/site-packages/numpy/testing/utils.py in assert_array_compare(comparison, x, y, err_msg, verbose, header, precision)
    735                                 names=('x', 'y'), precision=precision)
    736             if not cond:
--> 737                 raise AssertionError(msg)
    738     except ValueError:
    739         import traceback

AssertionError: 
Arrays are not almost equal to 2 decimals

(mismatch 87.5%)
 x: array([ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,
        0.,  0.,  0.])
 y: array([ 0, -1, -2, -3, -1, -2, -3, -2, -2, -3, -2, -1, -3, -2, -1,  0])

In [ ]: