Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5
decay_learning_rate = 1
creating cache_file = numerai_training_data.vw.cache
Reading datafile = numerai_training_data.vw
num sources = 1
average since example example current current current
loss last counter weight label predict features
0.693147 0.693147 1 1.0 1.0000 0.0000 51
0.702250 0.711353 2 2.0 -1.0000 0.0361 51
0.692608 0.682966 4 4.0 1.0000 0.0308 51
0.697531 0.702455 8 8.0 1.0000 0.0659 51
0.692737 0.687943 16 16.0 1.0000 0.0473 51
0.689853 0.686970 32 32.0 1.0000 0.0768 51
0.690615 0.691376 64 64.0 1.0000 0.1135 51
0.684862 0.679109 128 128.0 1.0000 0.1704 51
0.688580 0.692299 256 256.0 1.0000 0.0037 51
0.691000 0.693420 512 512.0 1.0000 0.1375 51
0.692395 0.693789 1024 1024.0 1.0000 0.2034 51
0.693348 0.694301 2048 2048.0 1.0000 -0.0048 51
0.695498 0.697648 4096 4096.0 1.0000 0.3704 51
0.697369 0.699239 8192 8192.0 1.0000 0.4184 51
0.701354 0.705339 16384 16384.0 1.0000 0.5981 51
0.710879 0.720403 32768 32768.0 -1.0000 -0.3593 51
0.718554 0.726229 65536 65536.0 -1.0000 0.9382 51
0.726906 0.726906 131072 131072.0 -1.0000 -1.3754 51 h
0.741395 0.755883 262144 262144.0 1.0000 -0.0345 51 h
finished run
number of examples per pass = 122916
passes used = 4
weighted example sum = 491664.000000
weighted label sum = 4552.000000
average loss = 0.726027 h
best constant = 0.018517
best constant's loss = 0.693104
total feature number = 25074864