Análisis de los datos obtenidos

Uso de ipython para el análsis y muestra de los datos obtenidos durante la producción.Se implementa un regulador experto. Los datos analizados son del día 12 de Agosto del 2015

Los datos del experimento:

  • Hora de inicio: 11:05
  • Hora final : 11:35
  • Filamento extruido: 435cm
  • $T: 150ºC$
  • $V_{min} tractora: 1.5 mm/s$
  • $V_{max} tractora: 3.4 mm/s$
  • Los incrementos de velocidades en las reglas del sistema experto son distintas:
    • En el caso 5 se pasa de un incremento de velocidad de +1 a un incremento de +2.

In [30]:
#Importamos las librerías utilizadas
import numpy as np
import pandas as pd
import seaborn as sns

In [31]:
#Mostramos las versiones usadas de cada librerías
print ("Numpy v{}".format(np.__version__))
print ("Pandas v{}".format(pd.__version__))
print ("Seaborn v{}".format(sns.__version__))


Numpy v1.9.2
Pandas v0.16.2
Seaborn v0.6.0

In [32]:
#Abrimos el fichero csv con los datos de la muestra
datos = pd.read_csv('ensayo1.CSV')

In [33]:
%pylab inline


Populating the interactive namespace from numpy and matplotlib

In [34]:
#Almacenamos en una lista las columnas del fichero con las que vamos a trabajar
columns = ['Diametro X','Diametro Y', 'RPM TRAC']

In [35]:
#Mostramos un resumen de los datos obtenidoss
datos[columns].describe()
#datos.describe().loc['mean',['Diametro X [mm]', 'Diametro Y [mm]']]


Out[35]:
Diametro X Diametro Y RPM TRAC
count 1114.000000 1114.000000 1114.000000
mean 1.748681 1.728351 2.530507
std 0.266034 0.269547 0.871920
min 1.023350 1.080687 1.497500
25% 1.565302 1.551901 1.497500
50% 1.734482 1.712803 2.610000
75% 1.952410 1.928298 3.500000
max 2.457085 2.528808 3.500000

Representamos ambos diámetro y la velocidad de la tractora en la misma gráfica


In [36]:
datos.ix[:, "Diametro X":"Diametro Y"].plot(figsize=(16,10),ylim=(0.5,3)).hlines([1.85,1.65],0,3500,colors='r')
#datos['RPM TRAC'].plot(secondary_y='RPM TRAC')


Out[36]:
<matplotlib.collections.LineCollection at 0x513b7d0>

In [37]:
datos.ix[:, "Diametro X":"Diametro Y"].boxplot(return_type='axes')


Out[37]:
<matplotlib.axes._subplots.AxesSubplot at 0x511d250>

Con esta segunda aproximación se ha conseguido estabilizar los datos. Se va a tratar de bajar ese porcentaje. Como segunda aproximación, vamos a modificar los incrementos en los que el diámetro se encuentra entre $1.80mm$ y $1.70 mm$, en ambos sentidos. (casos 3 a 6)

Comparativa de Diametro X frente a Diametro Y para ver el ratio del filamento


In [38]:
plt.scatter(x=datos['Diametro X'], y=datos['Diametro Y'], marker='.')


Out[38]:
<matplotlib.collections.PathCollection at 0x5022930>

Filtrado de datos

Las muestras tomadas $d_x >= 0.9$ or $d_y >= 0.9$ las asumimos como error del sensor, por ello las filtramos de las muestras tomadas.


In [39]:
datos_filtrados = datos[(datos['Diametro X'] >= 0.9) & (datos['Diametro Y'] >= 0.9)]

In [40]:
#datos_filtrados.ix[:, "Diametro X":"Diametro Y"].boxplot(return_type='axes')

Representación de X/Y


In [41]:
plt.scatter(x=datos_filtrados['Diametro X'], y=datos_filtrados['Diametro Y'], marker='.')


Out[41]:
<matplotlib.collections.PathCollection at 0x50da4b0>

Analizamos datos del ratio


In [42]:
ratio = datos_filtrados['Diametro X']/datos_filtrados['Diametro Y']
ratio.describe()


Out[42]:
count    1114.000000
mean        1.027120
std         0.177696
min         0.597692
25%         0.912259
50%         1.006821
75%         1.123901
max         1.726313
dtype: float64

In [43]:
rolling_mean = pd.rolling_mean(ratio, 50)
rolling_std = pd.rolling_std(ratio, 50)
rolling_mean.plot(figsize=(12,6))
# plt.fill_between(ratio, y1=rolling_mean+rolling_std, y2=rolling_mean-rolling_std, alpha=0.5)
ratio.plot(figsize=(12,6), alpha=0.6, ylim=(0.5,1.5))


Out[43]:
<matplotlib.axes._subplots.AxesSubplot at 0x3b94dd0>

Límites de calidad

Calculamos el número de veces que traspasamos unos límites de calidad. $Th^+ = 1.85$ and $Th^- = 1.65$


In [44]:
Th_u = 1.85
Th_d = 1.65

In [45]:
data_violations = datos[(datos['Diametro X'] > Th_u) | (datos['Diametro X'] < Th_d) |
                       (datos['Diametro Y'] > Th_u) | (datos['Diametro Y'] < Th_d)]

In [46]:
data_violations.describe()


Out[46]:
Tmp Husillo Tmp Nozzle Diametro X Diametro Y MARCHA PARO RPM EXTR RPM TRAC
count 1020.000000 1020.000000 1020.000000 1020.000000 1020 1020 1020 1020.000000
mean 66.109804 151.083725 1.749832 1.726640 1 1 0 2.551975
std 0.159864 0.725026 0.277519 0.281122 0 0 0 0.878147
min 65.800000 149.700000 1.023350 1.080687 True True 0 1.497500
25% 66.000000 150.500000 1.550964 1.528915 1 1 0 1.497500
50% 66.000000 151.100000 1.734482 1.701310 1 1 0 2.610000
75% 66.300000 151.600000 1.975350 1.942664 1 1 0 3.500000
max 66.500000 152.600000 2.457085 2.528808 True True 0 3.500000

In [47]:
data_violations.plot(subplots=True, figsize=(12,12))


Out[47]:
array([<matplotlib.axes._subplots.AxesSubplot object at 0x0542CBB0>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x05488B10>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F811F10>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F836650>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F85E930>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F88ED30>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F8B6F70>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x0F8C3BF0>], dtype=object)

In [ ]: