In [17]:
import numpy as np
import scipy
import matplotlib.pyplot as plt
c = 299792458
h = 6.62607004e-34
hr = h / (2 * np.pi)
m_e = 9.10938356e-31
m_p = 1.6726219e-27
e = 1.60217662e-19
e0 = 8.85418782e-12
pi = np.pi
R = m_e * e ** 4 / ((4 * pi * e0) ** 2 * 4 * pi * hr ** 3 * c)
In [61]:
#exercicio 2
D = (2 * 79 * e ** 2) / (4 * pi * e0 * (7.7 * e * 1e4))
b = D / (2 * np.tan(pi / 3))
print("D(m): %e, b(SI):%2e" % (D, b))
In [72]:
#exercicio 3
e_k = m_e * e ** 4 / (8 * e0 ** 2 * h ** 2)
delta_e = e_k * (1 - 1/16)
delta_v = np.sqrt(delta_e * 2 / m_p)
print("dE(eV): %f, dV(m/s): %e" % (delta_e / e, delta_v))
In [81]:
#exercicio 4
np.sqrt(63.3e9 / (R * 0.75))
Out[81]:
In [40]:
#exercicio 6
atom_sizes = np.array([1, 2, 3, 4, 6, 7])
red_mass = atom_sizes / (atom_sizes + m_e)
w = 0.75 / (R * red_mass * atom_sizes ** 2)
In [48]:
w[0]
Out[48]:
In [49]:
#exercicio 7
R/c * 0.75
Out[49]:
In [25]:
c / 2.3e-47
Out[25]:
In [ ]:
In [ ]:
# exercicio 7