In [17]:
import numpy as np
import scipy
import matplotlib.pyplot as plt

c = 299792458
h = 6.62607004e-34
hr = h / (2 * np.pi)
m_e = 9.10938356e-31
m_p = 1.6726219e-27
e = 1.60217662e-19
e0 = 8.85418782e-12
pi = np.pi
R = m_e * e ** 4 / ((4 * pi * e0) ** 2 * 4 * pi * hr ** 3 * c)

In [61]:
#exercicio 2
D = (2 * 79 * e ** 2) / (4 * pi * e0 * (7.7 * e * 1e4))
b = D / (2 * np.tan(pi / 3))
print("D(m): %e, b(SI):%2e" % (D, b))


D(m):2.954732e-12, b(SI):8.529578e-13

In [72]:
#exercicio 3
e_k = m_e * e ** 4 / (8 * e0 ** 2 * h ** 2)
delta_e = e_k * (1 - 1/16)
delta_v = np.sqrt(delta_e * 2 / m_p)
print("dE(eV): %f, dV(m/s): %e" % (delta_e / e, delta_v))


dE(eV): 12.755337, dV(m/s): 4.943303e+04

In [81]:
#exercicio 4


np.sqrt(63.3e9 / (R * 0.75))


Out[81]:
87.698882117932513

In [40]:
#exercicio 6
atom_sizes = np.array([1, 2, 3, 4, 6, 7])
red_mass = atom_sizes / (atom_sizes + m_e)
w = 0.75 / (R * red_mass * atom_sizes ** 2)

In [48]:
w[0]


Out[48]:
6.8345028952029222e-08

In [49]:
#exercicio 7
R/c * 0.75


Out[49]:
0.027453321247497935

In [25]:
c / 2.3e-47


Out[25]:
1.3034454695652174e+55

In [ ]:


In [ ]:
# exercicio 7