In [1]:
from skbio.stats.composition import ancom
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline


---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-1-b7c963e5dd2d> in <module>()
----> 1 from skbio.stats.composition import ancom
      2 import pandas as pd
      3 import matplotlib.pyplot as plt
      4 import seaborn as sns
      5 get_ipython().magic(u'matplotlib inline')

ImportError: cannot import name ancom

In [2]:
table = pd.read_csv('vibrio_biom.csv', index_col=0)
mapping = pd.read_csv('vibrio_mapping.csv', index_col=0)

In [4]:
table+1


Out[4]:
VF_0001 VF_0002 VF_0003 VF_0004 VF_0005 VF_0006 VF_0007 VF_0008 VF_0009 VF_0010 ... VF_B0045 VF_B0046 VF_B0047 VF_B0048 VF_B0050 VF_B0051 VF_B0052 VF_B0053 VF_B0054 VF_B0055
Plk1 19.491139 277.545263 299.488082 23.025002 1181.063429 210.237516 106.769318 1353.893946 33.133491 56.226870 ... 52.528642 24.586476 9.793564 5.026959 68.718662 19.819871 20.395151 19.162408 6.588433 57.213064
Plk2 12.628665 244.190767 686.513385 71.349809 1446.710243 69.038522 36.391588 228.083983 85.361989 98.724119 ... 14.578813 5.405892 1.938960 1.866733 13.423170 4.900297 7.933862 8.872823 3.022376 45.997876
Plk3 8.939793 272.813853 876.300154 89.640346 938.205728 89.826435 42.932032 297.253528 94.292568 104.899636 ... 11.110830 6.954845 2.984948 2.550741 16.383349 4.907867 3.667274 8.505586 3.419156 42.994062
Swt1 46.856251 192.837907 1519.114434 135.132496 1250.138492 11.190278 5.087960 16.107680 261.326055 256.171670 ... 17.648070 57.698233 22.743209 13.263881 57.816724 12.908406 15.396730 14.982009 12.256702 23.809634
Swt2 52.073162 251.429613 684.695880 51.941530 1071.825180 8.766280 3.237742 18.243774 196.868208 173.042841 ... 8.173936 17.388167 7.844857 5.607115 33.776333 6.462722 9.424439 7.318329 4.422428 11.662181
Swt3 44.505061 225.382080 781.253809 60.346578 743.423322 9.748300 3.600846 19.678803 236.494786 196.063452 ... 8.802538 18.496601 6.911014 4.783049 31.500831 8.093216 10.694062 8.802538 4.073727 11.639825
Vnt1 1.000000 70.778903 646.454849 120.205625 83.862447 123.113080 128.927988 2667.135572 107.122081 105.668354 ... 1.000000 66.417721 1.000000 1.000000 130.381715 22.805907 40.250633 53.334177 25.713361 112.936990
Vnt2 17.942199 185.018346 568.433340 83.886450 1088.689173 112.818513 143.314471 2107.306303 307.002178 261.909864 ... 5.431037 5.431037 2.824545 1.260649 11.947267 5.170387 10.122723 7.255581 3.085194 27.064921
Vnt3 15.060796 199.555488 347.406891 70.593840 1044.765578 94.880670 78.689450 1286.781709 215.178595 200.549685 ... 5.544904 3.698537 1.710141 1.284056 15.486881 5.402876 5.686932 7.533299 2.136226 29.973762

9 rows × 3692 columns


In [5]:
res = ancom(table+1, mapping['treatment'])

In [6]:
res.to_csv('vibro_results.csv')

In [ ]: