In [12]:
import pandas as pd
from pandas import Series, DataFrame

In [22]:
checking_file = "/Users/calex/Downloads/Checking1.csv"

header = ["date", "amt", "_a", "_b", "desc"]
keep = list(filter(lambda x: not x.startswith('_'), header))

df = pd.read_csv("/Users/calex/Downloads/Checking1.csv",
                 names=header,
                 usecols=keep)

In [23]:
df.head()


Out[23]:
date amt desc
0 10/12/2018 -64.04 PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT5V...
1 10/12/2018 -6.48 PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT68...
2 10/12/2018 -5.55 PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT87...
3 10/12/2018 4698.52 AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
4 10/12/2018 23.44 YMCA of Metropol Payroll 000101 IMM00000336542...

In [26]:
df[df['amt'] > 1000]


Out[26]:
date amt desc
3 10/12/2018 4698.52 AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
38 09/28/2018 4698.51 AMERICREDIT DIRECT DEP 180928 564044839211VDT ...
89 09/14/2018 4698.52 AMERICREDIT DIRECT DEP 180914 600045724949VDT ...
130 08/31/2018 4698.52 AMERICREDIT DIRECT DEP 180831 400035112359VDT ...
185 08/17/2018 4546.04 AMERICREDIT DIRECT DEP 180817 931507536879VDT ...
231 08/03/2018 4341.90 AMERICREDIT DIRECT DEP 180803 944907359007VDT ...
288 07/20/2018 4341.90 AMERICREDIT DIRECT DEP 180720 931107473232VDT ...
332 07/06/2018 4341.88 AMERICREDIT DIRECT DEP 180706 940507122326VDT ...
381 06/22/2018 4240.87 AMERICREDIT DIRECT DEP 180622 635067534972VDT ...
431 06/08/2018 4240.87 AMERICREDIT DIRECT DEP 180608 624068065452VDT ...
432 06/08/2018 3283.50 AMERICREDIT DIRECT DEP 180608 624068065453VDT ...
479 05/25/2018 4240.85 AMERICREDIT DIRECT DEP 180525 931006698961VDT ...
523 05/11/2018 4240.87 AMERICREDIT DIRECT DEP 180511 730034367801VDT ...
563 04/27/2018 4240.86 AMERICREDIT DIRECT DEP 180427 602044712515VDT ...
584 04/20/2018 1261.46 GM FINANCIAL AP DISBURS 180419 SAS CONFERENCE ...
599 04/13/2018 4240.86 AMERICREDIT DIRECT DEP 180413 485046051387VDT ...
642 03/30/2018 4022.64 AMERICREDIT DIRECT DEP 180330 935006473036VDT ...
651 03/27/2018 1242.35 PAYPAL TRANSFER 180327 5BD22AF52GFQ6 CURTIS AL...
688 03/16/2018 4022.64 AMERICREDIT DIRECT DEP 180316 609043454573VDT ...
709 03/09/2018 21825.55 AMERICREDIT DIRECT DEP 180309 775069122837VDT ...
731 03/02/2018 4022.65 AMERICREDIT DIRECT DEP 180302 487546814825VDT ...
775 02/16/2018 4022.64 AMERICREDIT DIRECT DEP 180216 934606289560VDT ...
820 02/02/2018 4022.64 AMERICREDIT DIRECT DEP 180202 405031800646VDT ...
845 01/19/2018 3894.66 AMERICREDIT DIRECT DEP 180119 571031361881VDT ...
887 01/05/2018 3894.67 AMERICREDIT DIRECT DEP 180105 595042112820VDT ...
932 12/22/2017 4223.64 AMERICREDIT DIRECT DEP 171222 285070518861VDT ...
974 12/08/2017 4223.65 AMERICREDIT DIRECT DEP 171208 939704624547VDT ...
1037 11/24/2017 3924.31 AMERICREDIT DIRECT DEP 171124 706071237525VDT ...
1082 11/10/2017 3896.95 AMERICREDIT DIRECT DEP 171110 932304944050VDT ...
1131 10/27/2017 3896.96 AMERICREDIT DIRECT DEP 171027 372546011435VDT ...
1183 10/16/2017 3306.99 ATM CHECK DEPOSIT ON 10/15 1900 WEST EVERMAN P...
1185 10/13/2017 3896.95 AMERICREDIT DIRECT DEP 171013 563030277944VDT ...

In [7]:
df.head()


Out[7]:
0 1 2 3 4
0 10/12/2018 -64.04 * NaN PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT5V...
1 10/12/2018 -6.48 * NaN PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT68...
2 10/12/2018 -5.55 * NaN PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT87...
3 10/12/2018 4698.52 * NaN AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
4 10/12/2018 23.44 * NaN YMCA of Metropol Payroll 000101 IMM00000336542...

In [10]:
df.filter( == "10/12/2018")


  File "<ipython-input-10-d41bed48ce61>", line 1
    df.filter(df.1 == "10/12/2018")
                 ^
SyntaxError: invalid syntax

In [ ]:


In [ ]:


In [ ]: