In [12]:
import pandas as pd
from pandas import Series, DataFrame
In [22]:
checking_file = "/Users/calex/Downloads/Checking1.csv"
header = ["date", "amt", "_a", "_b", "desc"]
keep = list(filter(lambda x: not x.startswith('_'), header))
df = pd.read_csv("/Users/calex/Downloads/Checking1.csv",
names=header,
usecols=keep)
In [23]:
df.head()
Out[23]:
date
amt
desc
0
10/12/2018
-64.04
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT5V...
1
10/12/2018
-6.48
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT68...
2
10/12/2018
-5.55
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT87...
3
10/12/2018
4698.52
AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
4
10/12/2018
23.44
YMCA of Metropol Payroll 000101 IMM00000336542...
In [26]:
df[df['amt'] > 1000]
Out[26]:
date
amt
desc
3
10/12/2018
4698.52
AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
38
09/28/2018
4698.51
AMERICREDIT DIRECT DEP 180928 564044839211VDT ...
89
09/14/2018
4698.52
AMERICREDIT DIRECT DEP 180914 600045724949VDT ...
130
08/31/2018
4698.52
AMERICREDIT DIRECT DEP 180831 400035112359VDT ...
185
08/17/2018
4546.04
AMERICREDIT DIRECT DEP 180817 931507536879VDT ...
231
08/03/2018
4341.90
AMERICREDIT DIRECT DEP 180803 944907359007VDT ...
288
07/20/2018
4341.90
AMERICREDIT DIRECT DEP 180720 931107473232VDT ...
332
07/06/2018
4341.88
AMERICREDIT DIRECT DEP 180706 940507122326VDT ...
381
06/22/2018
4240.87
AMERICREDIT DIRECT DEP 180622 635067534972VDT ...
431
06/08/2018
4240.87
AMERICREDIT DIRECT DEP 180608 624068065452VDT ...
432
06/08/2018
3283.50
AMERICREDIT DIRECT DEP 180608 624068065453VDT ...
479
05/25/2018
4240.85
AMERICREDIT DIRECT DEP 180525 931006698961VDT ...
523
05/11/2018
4240.87
AMERICREDIT DIRECT DEP 180511 730034367801VDT ...
563
04/27/2018
4240.86
AMERICREDIT DIRECT DEP 180427 602044712515VDT ...
584
04/20/2018
1261.46
GM FINANCIAL AP DISBURS 180419 SAS CONFERENCE ...
599
04/13/2018
4240.86
AMERICREDIT DIRECT DEP 180413 485046051387VDT ...
642
03/30/2018
4022.64
AMERICREDIT DIRECT DEP 180330 935006473036VDT ...
651
03/27/2018
1242.35
PAYPAL TRANSFER 180327 5BD22AF52GFQ6 CURTIS AL...
688
03/16/2018
4022.64
AMERICREDIT DIRECT DEP 180316 609043454573VDT ...
709
03/09/2018
21825.55
AMERICREDIT DIRECT DEP 180309 775069122837VDT ...
731
03/02/2018
4022.65
AMERICREDIT DIRECT DEP 180302 487546814825VDT ...
775
02/16/2018
4022.64
AMERICREDIT DIRECT DEP 180216 934606289560VDT ...
820
02/02/2018
4022.64
AMERICREDIT DIRECT DEP 180202 405031800646VDT ...
845
01/19/2018
3894.66
AMERICREDIT DIRECT DEP 180119 571031361881VDT ...
887
01/05/2018
3894.67
AMERICREDIT DIRECT DEP 180105 595042112820VDT ...
932
12/22/2017
4223.64
AMERICREDIT DIRECT DEP 171222 285070518861VDT ...
974
12/08/2017
4223.65
AMERICREDIT DIRECT DEP 171208 939704624547VDT ...
1037
11/24/2017
3924.31
AMERICREDIT DIRECT DEP 171124 706071237525VDT ...
1082
11/10/2017
3896.95
AMERICREDIT DIRECT DEP 171110 932304944050VDT ...
1131
10/27/2017
3896.96
AMERICREDIT DIRECT DEP 171027 372546011435VDT ...
1183
10/16/2017
3306.99
ATM CHECK DEPOSIT ON 10/15 1900 WEST EVERMAN P...
1185
10/13/2017
3896.95
AMERICREDIT DIRECT DEP 171013 563030277944VDT ...
In [7]:
df.head()
Out[7]:
0
1
2
3
4
0
10/12/2018
-64.04
*
NaN
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT5V...
1
10/12/2018
-6.48
*
NaN
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT68...
2
10/12/2018
-5.55
*
NaN
PURCHASE AUTHORIZED ON 10/10 AMZN Mktp US*MT87...
3
10/12/2018
4698.52
*
NaN
AMERICREDIT DIRECT DEP 181012 941607572332VDT ...
4
10/12/2018
23.44
*
NaN
YMCA of Metropol Payroll 000101 IMM00000336542...
In [10]:
df.filter( == "10/12/2018")
File "<ipython-input-10-d41bed48ce61>", line 1
df.filter(df.1 == "10/12/2018")
^
SyntaxError: invalid syntax
In [ ]:
In [ ]:
In [ ]:
Content source: curtisalexander/learning
Similar notebooks: