In [1]:
%matplotlib inline
In [2]:
import numpy as np
import pymc3 as pm
import seaborn as sns
import pandas as pd
In [3]:
coin_flips = np.array([0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0])
n = len(coin_flips)
heads = len(filter(lambda x: x == 0, coin_flips))
In [6]:
with pm.Model() as model:
prior = pm.Beta('prior', alpha=1, beta=1)
likelihood = pm.Binomial('flips', p=prior, n=n, observed=heads)
step = pm.NUTS()
trace = pm.sample(50000, step)
In [5]:
pm.traceplot(trace[1000:])
Out[5]:
In [ ]: