In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_moons
import bayesnet as bn
np.random.seed(1234)
In [2]:
x_train, y_train = make_moons(n_samples=500, noise=0.2)
y_train = y_train[:, None]
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, s=5)
plt.xlim(-2, 3)
plt.ylim(-2, 3)
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
In [3]:
class NeuralNetwork(bn.Network):
def __init__(self, n_input, n_hidden, n_output=1):
super().__init__(
w1=np.random.randn(n_input, n_hidden),
b1=np.zeros(n_hidden),
w2=np.random.randn(n_hidden, n_hidden),
b2=np.zeros(n_hidden),
w3=np.random.randn(n_hidden, n_output),
b3=np.zeros(n_output)
)
def __call__(self, x, y=None):
h = bn.tanh(x @ self.w1 + self.b1)
h = bn.tanh(h @ self.w2 + self.b2)
self.py = bn.random.Bernoulli(logit=h @ self.w3 + self.b3, data=y)
return self.py.mu.value
In [4]:
model = NeuralNetwork(2, 5, 1)
optimizer = bn.optimizer.Adam(model, 0.1)
optimizer.set_decay(0.9, 100)
for i in range(2000):
model.clear()
model(x_train, y_train)
log_likelihood = model.log_pdf()
log_likelihood.backward()
optimizer.update()
In [5]:
x_grid = np.mgrid[-2:3:100j, -2:3:100j]
x1, x2 = x_grid[0], x_grid[1]
x_grid = x_grid.reshape(2, -1).T
y_grid = model(x_grid).reshape(100, 100)
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train)
plt.contourf(x1, x2, y_grid, np.linspace(0, 1, 11), alpha=0.2)
plt.colorbar()
plt.xlim(-2, 3)
plt.ylim(-2, 3)
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
In [6]:
class BayesianNetwork(bn.Network):
def __init__(self, n_input, n_hidden, n_output=1):
super().__init__(
w1_mu=np.zeros((n_input, n_hidden)),
w1_s=np.zeros((n_input, n_hidden)),
b1_mu=np.zeros(n_hidden),
b1_s=np.zeros(n_hidden),
w2_mu=np.zeros((n_hidden, n_hidden)),
w2_s=np.zeros((n_hidden, n_hidden)),
b2_mu=np.zeros(n_hidden),
b2_s=np.zeros(n_hidden),
w3_mu=np.zeros((n_hidden, n_output)),
w3_s=np.zeros((n_hidden, n_output)),
b3_mu=np.zeros(n_output),
b3_s=np.zeros(n_output)
)
def __call__(self, x, y=None):
self.qw1 = bn.random.Gaussian(
self.w1_mu, bn.softplus(self.w1_s),
p=bn.random.Gaussian(0, 1)
)
self.qb1 = bn.random.Gaussian(
self.b1_mu, bn.softplus(self.b1_s),
p=bn.random.Gaussian(0, 1)
)
self.qw2 = bn.random.Gaussian(
self.w2_mu, bn.softplus(self.w2_s),
p=bn.random.Gaussian(0, 1)
)
self.qb2 = bn.random.Gaussian(
self.b2_mu, bn.softplus(self.b2_s),
p=bn.random.Gaussian(0, 1)
)
self.qw3 = bn.random.Gaussian(
self.w3_mu, bn.softplus(self.w3_s),
p=bn.random.Gaussian(0, 1)
)
self.qb3 = bn.random.Gaussian(
self.b3_mu, bn.softplus(self.b3_s),
p=bn.random.Gaussian(0, 1)
)
h = bn.tanh(x @ self.qw1.draw() + self.qb1.draw())
h = bn.tanh(h @ self.qw2.draw() + self.qb2.draw())
self.py = bn.random.Bernoulli(logit=h @ self.qw3.draw() + self.qb3.draw(), data=y)
return self.py.mu.value
In [7]:
model = BayesianNetwork(2, 5, 1)
optimizer = bn.optimizer.Adam(model, 0.1)
optimizer.set_decay(0.9, 100)
for i in range(2000):
model.clear()
model(x_train, y_train)
elbo = model.elbo()
elbo.backward()
optimizer.update()
In [8]:
x_grid = np.mgrid[-2:3:100j, -2:3:100j]
x1, x2 = x_grid[0], x_grid[1]
x_grid = x_grid.reshape(2, -1).T
y_grid = np.mean([model(x_grid).reshape(100, 100) for _ in range(100)], axis=0)
plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, s=5)
plt.contourf(x1, x2, y_grid, np.linspace(0, 1, 11), alpha=0.2)
plt.colorbar()
plt.xlim(-2, 3)
plt.ylim(-2, 3)
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
In [ ]: