In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import bayesnet as bn
np.random.seed(1234)
In [2]:
x_train = np.linspace(-3, 3, 10)[:, None]
y_train = np.cos(x_train) + np.random.normal(0, 0.1, size=x_train.shape)
In [3]:
class BayesianNetwork(bn.Network):
def __init__(self, n_input, n_hidden, n_output):
super().__init__(
w1_mu=np.zeros((n_input, n_hidden)),
w1_s=np.zeros((n_input, n_hidden)),
b1_mu=np.zeros(n_hidden),
b1_s=np.zeros(n_hidden),
w2_mu=np.zeros((n_hidden, n_output)),
w2_s=np.zeros((n_hidden, n_output)),
b2_mu=np.zeros(n_output),
b2_s=np.zeros(n_output)
)
def __call__(self, x, y=None):
self.qw1 = bn.random.Gaussian(
self.w1_mu, bn.softplus(self.w1_s),
p=bn.random.Gaussian(0, 1)
)
self.qb1 = bn.random.Gaussian(
self.b1_mu, bn.softplus(self.b1_s),
p=bn.random.Gaussian(0, 1)
)
self.qw2 = bn.random.Gaussian(
self.w2_mu, bn.softplus(self.w2_s),
p=bn.random.Gaussian(0, 1)
)
self.qb2 = bn.random.Gaussian(
self.b2_mu, bn.softplus(self.b2_s),
p=bn.random.Gaussian(0, 1)
)
h = bn.tanh(x @ self.qw1.draw() + self.qb1.draw())
mu = h @ self.qw2.draw() + self.qb2.draw()
self.py = bn.random.Gaussian(mu, 0.1, data=y)
if y is None:
return self.py.draw().value
In [4]:
model = BayesianNetwork(1, 20, 1)
optimizer = bn.optimizer.Adam(model, 0.1)
optimizer.set_decay(0.9, 100)
for _ in range(10000):
model.clear()
model(x_train, y_train)
elbo = model.elbo()
elbo.backward()
optimizer.update()
In [5]:
x = np.linspace(-3, 3, 1000)[:, None]
plt.scatter(x_train, y_train)
y = [model(x) for _ in range(100)]
y_mean = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
plt.plot(x, y_mean, c="orange")
plt.fill_between(x.ravel(), (y_mean - y_std).ravel(), (y_mean + y_std).ravel(), color="orange", alpha=0.2)
plt.show()
In [6]:
parameter = []
parameter.extend(list(model.w1_mu.value.ravel()))
parameter.extend(list(model.b1_mu.value.ravel()))
parameter.extend(list(model.w2_mu.value.ravel()))
parameter.extend(list(model.b2_mu.value.ravel()))
plt.plot(parameter)
Out[6]:
In [7]:
class ARDNetwork(bn.Network):
def __init__(self, n_input, n_hidden, n_output):
super().__init__(
w1_mu=np.zeros((n_input, n_hidden)),
w1_s=np.zeros((n_input, n_hidden)),
shape_w1=np.ones((n_input, n_hidden)),
rate_w1=np.ones((n_input, n_hidden)),
b1_mu=np.zeros(n_hidden),
b1_s=np.zeros(n_hidden),
shape_b1=np.ones(n_hidden),
rate_b1=np.ones(n_hidden),
w2_mu=np.zeros((n_hidden, n_output)),
w2_s=np.zeros((n_hidden, n_output)),
shape_w2=np.ones((n_hidden, n_output)),
rate_w2=np.ones((n_hidden, n_output)),
b2_mu=np.zeros(n_output),
b2_s=np.zeros(n_output),
shape_b2=np.ones(n_output),
rate_b2=np.ones(n_output)
)
def __call__(self, x, y=None):
ptau_w1 = bn.random.Gamma(1., 1e-2)
self.qtau_w1 = bn.random.Gamma(bn.softplus(self.shape_w1), bn.softplus(self.rate_w1), p=ptau_w1)
pw1 = bn.random.Gaussian(0, tau=self.qtau_w1.draw())
self.qw1 = bn.random.Gaussian(self.w1_mu, bn.softplus(self.w1_s), p=pw1)
ptau_b1 = bn.random.Gamma(1., 1e-2)
self.qtau_b1 = bn.random.Gamma(bn.softplus(self.shape_b1), bn.softplus(self.rate_b1), p=ptau_b1)
pb1 = bn.random.Gaussian(0, tau=self.qtau_b1.draw())
self.qb1 = bn.random.Gaussian(self.b1_mu, bn.softplus(self.b1_s), p=pb1)
ptau_w2 = bn.random.Gamma(1., 1e-2)
self.qtau_w2 = bn.random.Gamma(bn.softplus(self.shape_w2), bn.softplus(self.rate_w2), p=ptau_w2)
pw2 = bn.random.Gaussian(0, tau=self.qtau_w2.draw())
self.qw2 = bn.random.Gaussian(self.w2_mu, bn.softplus(self.w2_s), p=pw2)
ptau_b2 = bn.random.Gamma(1., 1e-2)
self.qtau_b2 = bn.random.Gamma(bn.softplus(self.shape_b2), bn.softplus(self.rate_b2), p=ptau_b2)
pb2 = bn.random.Gaussian(0, tau=self.qtau_b2.draw())
self.qb2 = bn.random.Gaussian(self.b2_mu, bn.softplus(self.b2_s), p=pb2)
h = bn.tanh(x @ self.qw1.draw() + self.qb1.draw())
mu = h @ self.qw2.draw() + self.qb2.draw()
self.py = bn.random.Gaussian(mu, 0.1, data=y)
if y is None:
return self.py.draw().value
In [8]:
model = ARDNetwork(1, 20, 1)
optimizer = bn.optimizer.Adam(model, 0.1)
optimizer.set_decay(0.9, 100)
for _ in range(10000):
model.clear()
model(x_train, y_train)
elbo = model.elbo()
elbo.backward()
optimizer.update()
In [9]:
x = np.linspace(-3, 3, 1000)[:, None]
plt.scatter(x_train, y_train)
y = [model(x) for _ in range(100)]
y_mean = np.mean(y, axis=0)
y_std = np.std(y, axis=0)
plt.plot(x, y_mean, c="orange")
plt.fill_between(x.ravel(), (y_mean - y_std).ravel(), (y_mean + y_std).ravel(), color="orange", alpha=0.2)
plt.show()
In [10]:
parameter = []
parameter.extend(list(model.w1_mu.value.ravel()))
parameter.extend(list(model.b1_mu.value.ravel()))
parameter.extend(list(model.w2_mu.value.ravel()))
parameter.extend(list(model.b2_mu.value.ravel()))
plt.plot(parameter)
Out[10]:
In [ ]: