In [5]:
X=[[0],[1],[2],[3]]
y=[0,0,1,1]
In [6]:
from sklearn.neighbors import KNeighborsClassifier
In [7]:
neigh = KNeighborsClassifier(n_neighbors=3)
In [8]:
neigh.fit(X,y)
Out[8]:
调用predict()函数,对未知样本[1.1]进行分类
In [10]:
print(neigh.predict([[1.1]]))
In [11]:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
创建一颗基于基尼系数的决策树
In [12]:
clf = DecisionTreeClassifier()
In [14]:
iris = load_iris()
In [15]:
cross_val_score(clf,iris.data,iris.target,cv=10)
Out[15]:
利用决策树fit()函数训练模型,并使用predict()函数进行预测
In [16]:
clf.fit(X,y)
clf.predict(x)
Out[16]:
决策树本质上是一种寻找对特征空间上的划分,旨在构建一个训练数据拟合的好,并且复杂度小的决策树
In [1]:
import numpy as np
X = np.array([[-1,-1],[-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
y = np.array([1,1,1,2,2,2])
导入高斯贝叶斯分类器
In [2]:
from sklearn.naive_bayes import GaussianNB
使用默认参数,创建一个高斯朴素贝叶斯分类器,并将该分类器赋给变量clf。
In [3]:
clf = GaussianNB(priors=None)
In [4]:
clf.fit(X,y)
print(clf.predict([[-0.8,-1]]))