In [1]:
import pandas as pd, matplotlib.pyplot as plt, numpy as np
%matplotlib inline
CCGT Gas
In [2]:
fop=np.linspace(12,20,100)
In [3]:
fcap=np.linspace(80,140,100)
In [4]:
eroi=np.zeros([len(fop),len(fcap)])
In [5]:
for i in range(len(fop)):
for j in range(len(fcap)):
eroi[i,j]=fop[i]*fcap[j]
In [11]:
CR=[50,90]
CF=[50,90]
In [19]:
fig,axes=plt.subplots(2,2,figsize=(8,9))
for i in range(len(axes)):
for j in range(len(axes[i])):
ax=axes[i][j]
im=ax.imshow(eroi[::-1])
fig.colorbar(im, cax=ax)
ax.set_xlabel('fop')
ax.set_ylabel('fcap')
ax.set_title('EROEI\nCR='+str(CR[i])+', CF='+str(CF[j]))
In [22]:
from matplotlib.colors import BoundaryNorm
from matplotlib.ticker import MaxNLocator
In [25]:
fig,axes=plt.subplots(2,2,figsize=(8,9))
for i in range(len(axes)):
for j in range(len(axes[i])):
ax=axes[i][j]
z = eroi[:-1, :-1]
levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max())
cmap = plt.get_cmap('viridis')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
im = ax.pcolormesh(fop, fcap, z, cmap=cmap, norm=norm)
fig.colorbar(im, ax=ax)
ax.set_xlabel('fop')
ax.set_ylabel('fcap')
ax.set_title('EROEI\nCR='+str(CR[i])+', CF='+str(CF[j]))
In [ ]:
fig,axes=plt.subplots(2,2,figsize=(8,9))
for i in range(len(axes)):
for j in range(len(axes[i])):
ax=axes[i][j]
z = eroi[:-1, :-1]
levels = MaxNLocator(nbins=15).tick_values(z.min(), z.max())
cmap = plt.get_cmap('viridis')
norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True)
im = ax.pcolormesh(fop, fcap, z, cmap=cmap, norm=norm)
fig.colorbar(im, ax=ax)
ax.set_xlabel('fop')
ax.set_ylabel('fcap')
ax.set_title('EROEI\nCR='+str(CR[i])+', CF='+str(CF[j]))