In [ ]:
%matplotlib inline
import os
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.pylab as pylab
matplotlib.style.use('ggplot')
pylab.rcParams['figure.figsize'] = 1, 10 # that's default image size for this interactive session
In [ ]:
working_dir = "../resources/results/results_supervised_sensem/"
experiments = {}
for lemma_dir in (d for d in os.listdir(working_dir) if not (d.endswith(".yaml") or d == ".RData" or d == ".Rhistory")):
experiments[lemma_dir] = {}
for experiment_dir in os.listdir(os.path.join(working_dir, lemma_dir)):
accuracy = np.loadtxt(os.path.join(working_dir, lemma_dir, experiment_dir, "accuracy"))
mcp = np.loadtxt(os.path.join(working_dir, lemma_dir, experiment_dir, "most_common_precision"))
lcr = np.loadtxt(os.path.join(working_dir, lemma_dir, experiment_dir, "less_common_recall"))
experiments[lemma_dir][experiment_dir] = pd.DataFrame({
'accuracy': accuracy,
'mcp': mcp,
'lcr': lcr
})
In [ ]:
accuracy_sensem = pd.read_csv("scripts/test_accuracy.csv", index_col=0)
accuracy_semeval = pd.read_csv("scripts/test_accuracy_semeval.csv", index_col=0)
accuracy_semeval_verbs_only = pd.read_csv("scripts/test_accuracy_semeval_verbs_only.csv", index_col=0)
In [ ]:
accuracy_sensem.boxplot(return_type='axes')
In [ ]:
accuracy_semeval.boxplot(return_type='axes')
In [ ]:
accuracy_semeval_verbs_only.boxplot(return_type='axes')
In [ ]: