Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [1]:
data_dir = './data'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [2]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[2]:
<matplotlib.image.AxesImage at 0x7f68bac7e390>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [3]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[3]:
<matplotlib.image.AxesImage at 0x7f68baba5f60>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [4]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [16]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    return \
        tf.placeholder(
            tf.float32,
            shape=[None, image_width, image_height,
                   image_channels],
            name='image_input'
        ),\
        tf.placeholder(
            tf.float32,
            shape=[None, z_dim],
            name='input_z'
        ),\
        tf.placeholder(
            tf.float32,
            name='learning_rate'
        )


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the discriminator, tensor logits of the discriminator).


In [91]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    alpha = 0.1
    
    with tf.variable_scope('discriminator', reuse=reuse):
        x1 = tf.layers.conv2d(images, 64, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        
        x2 = tf.layers.conv2d(relu1, 128, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)

        flat = tf.reshape(relu2, (-1, 7*7*128))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [87]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    alpha = 0.2
    with tf.variable_scope('generator', reuse=not is_train):
            x1 = tf.layers.dense(z, 7*7*128)
            
            x1 = tf.reshape(x1, (-1, 7, 7, 128))
            x1 = tf.layers.batch_normalization(x1, training=is_train)
            x1 = tf.maximum(alpha * x1, x1)

            x2 = tf.layers.conv2d_transpose(x1, 64, 5, strides=2, padding='same')
            x2 = tf.layers.batch_normalization(x2, training=is_train)
            x2 = tf.maximum(alpha * x2, x2)

            logits = tf.layers.conv2d_transpose(x2, out_channel_dim, 5, strides=2, padding='same')

            out = tf.tanh(logits)

            return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [92]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)
    
    d_loss_1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real)))
    d_loss_2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))
    
    d_loss = d_loss_1 + d_loss_2
    
    return d_loss, g_loss


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [93]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    vars = tf.trainable_variables()
    d_vars = [var for var in vars if var.name.startswith('discriminator')]
    g_vars = [var for var in vars if var.name.startswith('generator')]
    
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        return \
            tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars),\
            tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [94]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [96]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    img_w, img_h, img_chan = data_shape[1], data_shape[2], data_shape[3]
    inp_real, inp_z, _ = model_inputs(img_w, img_h, img_chan, z_dim)
    d_loss, g_loss = model_loss(inp_real, inp_z, img_chan)
    d_opt, g_opt = model_opt(d_loss, g_loss, learning_rate, beta1)
    
    saver = tf.train.Saver()
    sample_z = np.random.uniform(-1, 1, size=(72, z_dim))
    
    display_interval = 100
    num_img_to_disp = 25
    steps = 0
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                steps += 1
                
                batch_images *= 2
                #Random noise for generator
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))
                
                #Run optimizers
                _ = sess.run(d_opt, feed_dict={inp_real: batch_images, inp_z: batch_z})
                _ = sess.run(g_opt, feed_dict={inp_z: batch_z, inp_real: batch_images})
                
                if steps % display_interval == 0:
                    train_loss_d = d_loss.eval({inp_real: batch_images, inp_z: batch_z})
                    train_loss_g = g_loss.eval({inp_z: batch_z})
                    
                    print("Epoch: {} of {}".format(epoch_i, epoch_count),
                          "D-loss: {}".format(train_loss_d),
                          "G-loss: {}".format(train_loss_g))
                    
                    show_generator_output(sess, num_img_to_disp, inp_z, img_chan, data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [97]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch: 0 of 2 D-loss: 0.5391666889190674 G-loss: 2.2995431423187256
Epoch: 0 of 2 D-loss: 0.8975945115089417 G-loss: 2.3413166999816895
Epoch: 0 of 2 D-loss: 0.79310142993927 G-loss: 0.9347778558731079
Epoch: 0 of 2 D-loss: 0.7135664224624634 G-loss: 1.1123948097229004
Epoch: 0 of 2 D-loss: 0.5682525634765625 G-loss: 1.508472204208374
Epoch: 0 of 2 D-loss: 0.636867105960846 G-loss: 1.2927882671356201
Epoch: 0 of 2 D-loss: 0.45319128036499023 G-loss: 1.379237174987793
Epoch: 0 of 2 D-loss: 0.4897364675998688 G-loss: 1.672921061515808
Epoch: 0 of 2 D-loss: 0.552374005317688 G-loss: 1.2338409423828125
Epoch: 0 of 2 D-loss: 0.6954278945922852 G-loss: 1.5751302242279053
Epoch: 0 of 2 D-loss: 0.6138781905174255 G-loss: 1.8759486675262451
Epoch: 0 of 2 D-loss: 0.7150304317474365 G-loss: 0.9466752409934998
Epoch: 0 of 2 D-loss: 0.6092244386672974 G-loss: 1.4878273010253906
Epoch: 0 of 2 D-loss: 0.5053708553314209 G-loss: 1.7177186012268066
Epoch: 0 of 2 D-loss: 0.6398372650146484 G-loss: 1.2910242080688477
Epoch: 0 of 2 D-loss: 0.6557894945144653 G-loss: 1.3456922769546509
Epoch: 0 of 2 D-loss: 0.8472046256065369 G-loss: 0.78510981798172
Epoch: 0 of 2 D-loss: 0.773600697517395 G-loss: 1.146639347076416
Epoch: 1 of 2 D-loss: 0.9723601341247559 G-loss: 0.6803014278411865
Epoch: 1 of 2 D-loss: 0.5887997150421143 G-loss: 1.52005934715271
Epoch: 1 of 2 D-loss: 0.8241585493087769 G-loss: 0.775072455406189
Epoch: 1 of 2 D-loss: 0.6048212051391602 G-loss: 1.161989450454712
Epoch: 1 of 2 D-loss: 0.39913737773895264 G-loss: 1.7696142196655273
Epoch: 1 of 2 D-loss: 0.5921352505683899 G-loss: 1.1431738138198853
Epoch: 1 of 2 D-loss: 0.5210222005844116 G-loss: 1.5016050338745117
Epoch: 1 of 2 D-loss: 0.45597726106643677 G-loss: 1.3791396617889404
Epoch: 1 of 2 D-loss: 0.4665980637073517 G-loss: 1.5218806266784668
Epoch: 1 of 2 D-loss: 0.47122734785079956 G-loss: 1.881813645362854
Epoch: 1 of 2 D-loss: 0.6035251021385193 G-loss: 1.0731401443481445
Epoch: 1 of 2 D-loss: 1.4398378133773804 G-loss: 0.4285445809364319
Epoch: 1 of 2 D-loss: 0.45568037033081055 G-loss: 1.4802706241607666
Epoch: 1 of 2 D-loss: 0.4823797047138214 G-loss: 1.4131443500518799
Epoch: 1 of 2 D-loss: 0.4452733099460602 G-loss: 1.4764553308486938
Epoch: 1 of 2 D-loss: 0.3920961618423462 G-loss: 1.6155827045440674
Epoch: 1 of 2 D-loss: 0.29618048667907715 G-loss: 1.9856724739074707
Epoch: 1 of 2 D-loss: 0.38263630867004395 G-loss: 1.7254571914672852
Epoch: 1 of 2 D-loss: 0.5627943277359009 G-loss: 1.1765414476394653

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [98]:
batch_size = 32
z_dim = 100
learning_rate = 0.0002
beta1 = 0.5


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch: 0 of 1 D-loss: 0.6513157486915588 G-loss: 1.0827913284301758
Epoch: 0 of 1 D-loss: 0.8430140018463135 G-loss: 1.9411882162094116
Epoch: 0 of 1 D-loss: 1.1691391468048096 G-loss: 0.5131836533546448
Epoch: 0 of 1 D-loss: 0.934013307094574 G-loss: 0.812045693397522
Epoch: 0 of 1 D-loss: 0.8830019235610962 G-loss: 0.8348852396011353
Epoch: 0 of 1 D-loss: 0.8264487981796265 G-loss: 1.08010733127594
Epoch: 0 of 1 D-loss: 0.7362344264984131 G-loss: 1.190969467163086
Epoch: 0 of 1 D-loss: 0.8754218816757202 G-loss: 1.0193406343460083
Epoch: 0 of 1 D-loss: 1.1126590967178345 G-loss: 0.9247655868530273
Epoch: 0 of 1 D-loss: 0.9276143312454224 G-loss: 1.3139328956604004
Epoch: 0 of 1 D-loss: 1.2428724765777588 G-loss: 0.7951692342758179
Epoch: 0 of 1 D-loss: 1.2566879987716675 G-loss: 0.6814365386962891
Epoch: 0 of 1 D-loss: 1.2261936664581299 G-loss: 0.8667938709259033
Epoch: 0 of 1 D-loss: 1.0598721504211426 G-loss: 0.7771056294441223
Epoch: 0 of 1 D-loss: 1.0924100875854492 G-loss: 1.115079402923584
Epoch: 0 of 1 D-loss: 1.1327793598175049 G-loss: 1.3616981506347656
Epoch: 0 of 1 D-loss: 0.9261082410812378 G-loss: 1.0280685424804688
Epoch: 0 of 1 D-loss: 1.1427282094955444 G-loss: 1.2109477519989014
Epoch: 0 of 1 D-loss: 1.128495454788208 G-loss: 0.77203369140625
Epoch: 0 of 1 D-loss: 1.123119831085205 G-loss: 0.6245384216308594
Epoch: 0 of 1 D-loss: 0.7260092496871948 G-loss: 1.1493499279022217
Epoch: 0 of 1 D-loss: 1.1739284992218018 G-loss: 0.6047641038894653
Epoch: 0 of 1 D-loss: 0.8976516127586365 G-loss: 1.2201296091079712
Epoch: 0 of 1 D-loss: 1.0594329833984375 G-loss: 0.8659907579421997
Epoch: 0 of 1 D-loss: 1.1041247844696045 G-loss: 1.0080926418304443
Epoch: 0 of 1 D-loss: 0.9995476007461548 G-loss: 0.8901782035827637
Epoch: 0 of 1 D-loss: 0.8298320174217224 G-loss: 0.9991481900215149
Epoch: 0 of 1 D-loss: 1.028315782546997 G-loss: 1.2466669082641602
Epoch: 0 of 1 D-loss: 1.0740729570388794 G-loss: 0.8256305456161499
Epoch: 0 of 1 D-loss: 1.0063849687576294 G-loss: 0.8026559352874756
Epoch: 0 of 1 D-loss: 1.2438546419143677 G-loss: 0.6040338277816772
Epoch: 0 of 1 D-loss: 0.9579379558563232 G-loss: 0.9337537288665771
Epoch: 0 of 1 D-loss: 0.9736708402633667 G-loss: 0.9194068908691406
Epoch: 0 of 1 D-loss: 0.933546781539917 G-loss: 0.8367288112640381
Epoch: 0 of 1 D-loss: 1.2816803455352783 G-loss: 0.5954708456993103
Epoch: 0 of 1 D-loss: 1.1527736186981201 G-loss: 0.703919529914856
Epoch: 0 of 1 D-loss: 0.9050215482711792 G-loss: 0.7327181696891785
Epoch: 0 of 1 D-loss: 1.015741229057312 G-loss: 1.0292859077453613
Epoch: 0 of 1 D-loss: 1.123008370399475 G-loss: 0.8050357103347778
Epoch: 0 of 1 D-loss: 0.9167011976242065 G-loss: 1.0790865421295166
Epoch: 0 of 1 D-loss: 1.0033721923828125 G-loss: 0.9385285377502441
Epoch: 0 of 1 D-loss: 0.947760820388794 G-loss: 0.9321793913841248
Epoch: 0 of 1 D-loss: 0.9700342416763306 G-loss: 0.7347567081451416
Epoch: 0 of 1 D-loss: 1.1637884378433228 G-loss: 0.9156661629676819
Epoch: 0 of 1 D-loss: 1.2217769622802734 G-loss: 0.7443035840988159
Epoch: 0 of 1 D-loss: 1.3894157409667969 G-loss: 0.43433892726898193
Epoch: 0 of 1 D-loss: 1.0298635959625244 G-loss: 0.9460082054138184
Epoch: 0 of 1 D-loss: 1.0144981145858765 G-loss: 0.8054088950157166
Epoch: 0 of 1 D-loss: 1.0015231370925903 G-loss: 0.9238856434822083
Epoch: 0 of 1 D-loss: 0.8267247676849365 G-loss: 1.0661598443984985
Epoch: 0 of 1 D-loss: 1.1381038427352905 G-loss: 0.68479984998703
Epoch: 0 of 1 D-loss: 0.7641849517822266 G-loss: 1.1946102380752563
Epoch: 0 of 1 D-loss: 1.1016387939453125 G-loss: 0.9396533370018005
Epoch: 0 of 1 D-loss: 1.1475898027420044 G-loss: 0.6937500238418579
Epoch: 0 of 1 D-loss: 1.0672639608383179 G-loss: 1.1297001838684082
Epoch: 0 of 1 D-loss: 1.292569637298584 G-loss: 0.5260360240936279
Epoch: 0 of 1 D-loss: 1.042792797088623 G-loss: 0.9523698687553406
Epoch: 0 of 1 D-loss: 1.090966820716858 G-loss: 0.884600818157196
Epoch: 0 of 1 D-loss: 1.080143928527832 G-loss: 0.7268129587173462
Epoch: 0 of 1 D-loss: 0.9098325371742249 G-loss: 0.9007792472839355
Epoch: 0 of 1 D-loss: 0.9275919795036316 G-loss: 0.8014258146286011
Epoch: 0 of 1 D-loss: 0.9633482694625854 G-loss: 1.2000353336334229
Epoch: 0 of 1 D-loss: 1.0474934577941895 G-loss: 0.8776285648345947

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.