In [6]:
%matplotlib inline
from matplotlib.colors import LogNorm
In [7]:
f = open("results/test_with_bigger_k_range_FGM")
FGM = np.array([ [ float(e) for e in line.split() ] for line in f.readlines() ])
FGM_masked = np.ma.masked_less_equal(FGM/2.7e-6, 0)
f = open("results/test_with_bigger_k_range_kr")
kr = np.array([ [ float(e) for e in line.split() ] for line in f.readlines() ])
f = open("results/test_with_bigger_k_range_kthe")
kthe = np.array([ [ float(e) for e in line.split() ] for line in f.readlines() ])
In [8]:
plt.matshow(FGM/2.7e-6, extent=(0, 30, -2.5, 0), interpolation='none', aspect='auto')
plt.colorbar()
plt.xlabel("$\Omega/\Omega_\odot$")
plt.ylabel("$\partial\log\Omega/\partial\log r$")
plt.title("FGM [$\Omega_\odot$]")
Out[8]:
In [9]:
plt.matshow(kr, extent=(0, 30, -2.5, 0), interpolation='none', aspect='auto')
#norm=LogNorm(vmin=1e-6))
plt.colorbar()
plt.xlabel("$\Omega/\Omega_\odot$")
plt.ylabel("$\partial\log\Omega/\partial\log r$")
plt.title("$k_r$ for FGM [$cm^{-1}$]")
Out[9]:
In [10]:
plt.matshow(kthe, extent=(0, 30, -2.5, 0), interpolation='none', aspect='auto')
plt.colorbar()
plt.xlabel("$\Omega/\Omega_\odot$")
plt.ylabel("$\partial\log\Omega/\partial\log r$")
plt.title(r"$k_{\theta}$ for FGM [$cm^{-1}$]")
Out[10]:
In [11]:
plt.matshow(FGM/(kr*kr), extent=(0, 30, -2.5, 0), interpolation='none', aspect='auto', vmin=0)
plt.colorbar()
plt.xlabel("$\Omega/\Omega_\odot$")
plt.ylabel("$\partial\log\Omega/\partial\log r$")
Out[11]:
In [11]:
In [ ]: