Fitting 5 folds for each of 6 candidates, totalling 30 fits
[CV] linearsvc__C=0.001 ..............................................
[CV] ..................... linearsvc__C=0.001, score=0.650645 - 15.3s
[CV] linearsvc__C=0.001 ..............................................
[CV] ..................... linearsvc__C=0.001, score=0.638660 - 15.5s
[Parallel(n_jobs=1)]: Done 1 jobs | elapsed: 15.3s
[Parallel(n_jobs=1)]: Done 2 jobs | elapsed: 30.8s
[CV] linearsvc__C=0.001 ..............................................
[CV] ..................... linearsvc__C=0.001, score=0.643320 - 15.4s
[CV] linearsvc__C=0.001 ..............................................
[CV] ..................... linearsvc__C=0.001, score=0.623891 - 15.7s
[CV] linearsvc__C=0.001 ..............................................
[CV] ..................... linearsvc__C=0.001, score=0.627149 - 14.9s
[CV] linearsvc__C=0.01 ...............................................
[CV] ...................... linearsvc__C=0.01, score=0.811254 - 17.0s
[CV] linearsvc__C=0.01 ...............................................
[CV] ...................... linearsvc__C=0.01, score=0.801998 - 16.9s
[CV] linearsvc__C=0.01 ...............................................
[CV] ...................... linearsvc__C=0.01, score=0.805180 - 17.3s
[Parallel(n_jobs=1)]: Done 5 jobs | elapsed: 1.3min
[Parallel(n_jobs=1)]: Done 8 jobs | elapsed: 2.1min
[CV] linearsvc__C=0.01 ...............................................
[CV] ...................... linearsvc__C=0.01, score=0.781786 - 19.9s
[CV] linearsvc__C=0.01 ...............................................
[CV] ...................... linearsvc__C=0.01, score=0.802015 - 17.0s
[CV] linearsvc__C=0.1 ................................................
[CV] ....................... linearsvc__C=0.1, score=0.893318 - 20.8s
[CV] linearsvc__C=0.1 ................................................
[CV] ....................... linearsvc__C=0.1, score=0.901293 - 20.6s
[CV] linearsvc__C=0.1 ................................................
[CV] ....................... linearsvc__C=0.1, score=0.885815 - 19.6s
[CV] linearsvc__C=0.1 ................................................
[CV] ....................... linearsvc__C=0.1, score=0.884092 - 20.2s
[CV] linearsvc__C=0.1 ................................................
[CV] ....................... linearsvc__C=0.1, score=0.887374 - 21.2s
[CV] linearsvc__C=1.0 ................................................
[CV] ....................... linearsvc__C=1.0, score=0.915592 - 32.5s
[CV] linearsvc__C=1.0 ................................................
[CV] ....................... linearsvc__C=1.0, score=0.925969 - 24.1s
[CV] linearsvc__C=1.0 ................................................
[CV] ....................... linearsvc__C=1.0, score=0.916421 - 23.7s
[Parallel(n_jobs=1)]: Done 13 jobs | elapsed: 3.8min
[Parallel(n_jobs=1)]: Done 18 jobs | elapsed: 5.8min
[CV] linearsvc__C=1.0 ................................................
[CV] ....................... linearsvc__C=1.0, score=0.912478 - 22.4s
[CV] linearsvc__C=1.0 ................................................
[CV] ....................... linearsvc__C=1.0, score=0.911678 - 22.8s
[CV] linearsvc__C=10.0 ...............................................
[CV] ...................... linearsvc__C=10.0, score=0.913834 - 39.0s
[CV] linearsvc__C=10.0 ...............................................
[CV] ...................... linearsvc__C=10.0, score=0.918331 - 40.0s
[CV] linearsvc__C=10.0 ...............................................
[CV] ...................... linearsvc__C=10.0, score=0.908770 - 37.9s
[CV] linearsvc__C=10.0 ...............................................
[CV] ...................... linearsvc__C=10.0, score=0.912478 - 38.4s
[CV] linearsvc__C=10.0 ...............................................
[CV] ...................... linearsvc__C=10.0, score=0.912270 - 39.5s
[CV] linearsvc__C=100.0 ..............................................
[CV] ..................... linearsvc__C=100.0, score=0.913247 - 1.3min
[CV] linearsvc__C=100.0 ..............................................
[CV] ..................... linearsvc__C=100.0, score=0.917744 - 1.4min
[CV] linearsvc__C=100.0 ..............................................
[CV] ..................... linearsvc__C=100.0, score=0.908770 - 1.3min
[CV] linearsvc__C=100.0 ..............................................
[CV] ..................... linearsvc__C=100.0, score=0.910704 - 1.3min
[CV] linearsvc__C=100.0 ..............................................
[CV] ..................... linearsvc__C=100.0, score=0.912863 - 1.4min
[Parallel(n_jobs=1)]: Done 25 jobs | elapsed: 9.8min
[Parallel(n_jobs=1)]: Done 30 out of 30 | elapsed: 16.5min finished
Out[7]:
GridSearchCV(cv=5, error_score='raise',
estimator=Pipeline(steps=[('featureunion', FeatureUnion(n_jobs=1,
transformer_list=[('tfidfvectorizer-1', TfidfVectorizer(analyzer='char', binary=False, decode_error=u'strict',
dtype=<type 'numpy.int64'>, encoding=u'utf-8', input=u'content',
lowercase=True, max_df=1.0, max_features=None, min_df=...2', max_iter=1000, multi_class='ovr',
penalty='l2', random_state=None, tol=0.0001, verbose=0))]),
fit_params={}, iid=True, loss_func=None, n_jobs=1,
param_grid={'linearsvc__C': array([ 1.00000e-03, 1.00000e-02, 1.00000e-01, 1.00000e+00,
1.00000e+01, 1.00000e+02])},
pre_dispatch='2*n_jobs', refit=True, score_func=None, scoring=None,
verbose=10)