In [6]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plot
import matplotlib
matplotlib.style.use("ggplot")
%matplotlib inline
In [7]:
fingerlakes_data = pd.read_csv("FIngerlakes_OPR_Normalized.csv")
In [8]:
fingerlakes_data
Out[8]:
In [10]:
def make_data_groups(dataframe, column_names):
master_group = []
for i in column_names:
group = []
group.append(dataframe[i])
master_group.append(group)
return master_group
check_it_out = make_data_groups(fingerlakes_data, team_numbers_list)
In [11]:
team_numbers = fingerlakes_data[:0]
team_numbers_list = list(team_numbers)
del team_numbers_list[0]
# team_numbers_list = map(int, team_numbers_list)
print team_numbers_list
medians = fingerlakes_data.median()
sorted_medians = medians.sort_values()
sorted_med_list = list(sorted_medians)
median_keys = list(sorted_medians.keys())
real_keys = median_keys.reverse()
In [ ]:
check_it_out = make_data_groups(fingerlakes_data, median_keys)
labels = median_keys
figure = plot.boxplot(check_it_out)
plot.title('Standardized OPR from 2008-2015 (Fingerlakes)', fontsize=32)
plot.ylabel('Adjusted OPR', fontsize=24)
plot.xlabel('Team Number', fontsize=24)
fig = matplotlib.pyplot.gcf()
fig.set_size_inches(20, 10)
plot.xticks(range(52), labels, rotation='vertical')
plot.savefig('opr_boxplots_fingerlakes.png')