In [9]:
import random
sf_height = [random.randint(80, 160) for x in range(200)]
ny_height = [random.randint(130, 200) for x in range(200)]
In [34]:
data = map(lambda x: (x,1), sf_height)
data += map(lambda x: (x,0), ny_height)
datamap = {}
for (x, y) in data:
datamap[x] = y
In [30]:
import numpy as np
theta = np.array([[1],[1]])
In [28]:
def hypo(x):
vecx = np.array([[1],[x]])
return np.dot(np.transpose(theta), vecx)[0][0]
In [36]:
def get_y(x):
return datamap[x]
In [41]:
def errorfn(x):
return (hypo(x) - get_y(x))
In [43]:
def calcu():
tmp = theta[:]
In [ ]: