conda install rpy2
In [1]:
%load_ext rpy2.ipython
# conda install rpy2
In [57]:
import numpy as np
X = np.array([4.5,6.3,7.9, 10.3])
%Rpush X
%R mean(X)
Out[57]:
In [58]:
%%R
Y = c(2,4,3,9)
summary(lm(Y~X))
In [59]:
%R plot(X, Y)
In [60]:
%R dat = data.frame(X, Y)
Out[60]:
In [90]:
%R x = c(3,4,6.7); y = c(4,6,7); z = c('a',3,4)
Out[90]:
In [91]:
%R x
Out[91]:
In [95]:
x
Out[95]:
In [66]:
%Rpull dat
In [67]:
dat
Out[67]:
In [17]:
# import rpy2's package module
import rpy2.robjects.packages as rpackages
# import R's utility package
utils = rpackages.importr('utils')
Out[17]:
In [77]:
# select a mirror for R packages
utils.chooseCRANmirror()
Out[77]:
In [78]:
# R package names
packnames = ('ggplot2', 'hexbin')
# R vector of strings
from rpy2.robjects.vectors import StrVector
# Selectively install what needs to be install.
# We are fancy, just because we can.
names_to_install = packnames
if len(names_to_install) > 0:
utils.install_packages(StrVector(names_to_install))
In [2]:
import rpy2.interactive as r
import rpy2.interactive.packages # this can take few seconds
r.packages.importr('ggplot2')
Out[2]:
In [80]:
%%R
p = ggplot(data = dat, mapping = aes(x = X, y =Y))
p + geom_point()
In [81]:
%%R
library(lattice)
attach(mtcars)
# scatterplot matrix
splom(mtcars[c(1,3,4,5,6)], main="MTCARS Data")
In [82]:
%%R
data(diamonds)
set.seed(42)
small = diamonds[sample(nrow(diamonds), 1000), ]
head(small)
p = ggplot(data = small, mapping = aes(x = carat, y = price))
p + geom_point()
In [83]:
%%R
p = ggplot(data=small, mapping=aes(x=carat, y=price, shape=cut, colour=color))
p+geom_point()
In [84]:
import rpy2.robjects as ro
from rpy2.robjects.packages import importr
base = importr('base')
fit_full = ro.r("lm('mpg ~ wt + cyl', data=mtcars)")
print(base.summary(fit_full))
In [85]:
diamonds = ro.r("data(diamonds)")
In [86]:
%R head(diamonds)
Out[86]:
In [87]:
fit_dia = ro.r("lm('price ~ carat + cut + color + clarity + depth', data=diamonds)")
In [88]:
print(base.summary(fit_dia))
In [ ]: