In [104]:
#from __future__ import print_function

import numpy as np
import pandas as pd
from collections import OrderedDict #sorting participant df dict before pd.concat()
import matplotlib.pylab as plt
%matplotlib inline

pd.options.display.mpl_style = 'default'
import cPickle as pickle

pilot_data = ['010', '011', '012', '013', '014',]
non_english_fluent  = ['023', '031', '045', '050', '070', '106',]
left_handed = ['042', '088',]
pro_inst_skill = ['026', '037']

excluded_all_tasks = pilot_data + non_english_fluent + left_handed + pro_inst_skill

Utility functions


In [105]:
def col_matches(df, regex):
    'returns a list of columns in a df that match a regex string.'
    import re
    cols = list(enumerate(df.columns))
    matches = [c for (i, c) in cols 
               if re.findall(regex, c)]
    return matches

def compare_transformations(df, columns, functions, **kwargs):    
    print('raw')
    df[columns].hist(**kwargs)
    plt.show()
    
    for name, func in functions.items():       
        print(name)        
        df[columns].apply(func).hist(**kwargs)
        plt.show()
        
        
def quickcompare(r, df, size=(15,7)): 
    inverse = lambda x: 1.0/x
    return compare_transformations(df, col_matches(df, r),
                                   {'inverse': inverse,
                                    'log1p': np.log1p,
                                    'sqrt':  np.sqrt,  },
                                    figsize=size)


# using this for inline documentation so that it's clear
# that the printing statement isn't part of the necessary
# transformation code.
def html_print(df):
    from IPython.display import HTML    
    try:
        out = df.to_html()
    except AttributeError:
        out = pd.DataFrame(df).to_html()
    return HTML(out)


def htmljoin(df_list, delimiter=''):
    from IPython.display import HTML
    return HTML(delimiter.join([x.to_html() for x in df_list]))
    
    
def col_matches(df, regex):     
    import re    
    cols = list(enumerate(df.columns))       
    matches = [c for (i, c) in cols 
               if re.findall(regex, c)]      
    return matches


def concat_matches(df, *args):    
    assert all([len(r) for r in args])
    import re        
    col_match_lists = [col_matches(df, regex) for regex in args]    
    col_set = [df[matches] for matches in col_match_lists]    
    if len(col_set) == 0:
        return None    
    elif len(col_set) == 1:
        return col_set[0]    
    else:
        return pd.concat(col_set, axis=1)

    
def show_frames(frame_list, delimiter=''):
    
    from IPython.display import HTML
    
    if len(frame_list) == len(delimiter):        
        html_out = ""
        item_template = '<p><strong>{}</strong></p>{}<br>'      
        
        for i, tup in enumerate(zip(frame_list, delimiter)):
            frame = tup[0]
            tag = tup[1]
            html_out += item_template.format(tag, frame.to_html())            
        return HTML(html_out)
        
    else:        
        html_out = [df.to_html() for df in frame_list]        
        return HTML(delimiter.join(html_out))
    

def hist_all(df, *args, **kwargs):
    numcols = len(df.columns)
    if numcols > 30:
        yn = raw_input(str(numcols) + " columns. Proceed?")
        if 'n' in yn: return None
    for c in df:
        print(c)
        try:
            plt.hist(df[c])
            plt.show()
        except:
            print("\t(can't histogram this)\n")
            

def scatter_all(df, print_max=None, *args, **kwargs):    
    from itertools import combinations       
    numcols = len(df.columns)
    if numcols > 6:
        yn = raw_input(str(numcols) + " columns. Proceed?")
        if 'n' in yn: return None
    
    combos = combinations(df.columns, 2)
    for c in combos:
        print(c)
        x = df[c[0]]
        y = df[c[1]]
        
        dfc = pd.concat([x, y], axis=1)
        xsort = dfc.sort(columns=dfc.columns[0], inplace=False)
        ysort = dfc.sort(columns=dfc.columns[1], inplace=False)        
        
        #print(dfc)
        try:
            dfc.plot(kind='scatter', x=0, y=1)
            plt.show()
        except:
            print("can't plot")
        
        if print_max:
            print(xsort.head(print_max))
            print(ysort.head(print_max))

Importing data, exporting partial info to CSV for SPSS


In [106]:
pfilenames = "c:/db_pickles/pickle - dfo-{measure} - {updated}.pickle"
full_updated = '2014-10-13a'

#pfile = pfilenames.format(measure='full', updated=full_updated)
pfile = pfilenames.format(measure='flat', updated=full_updated)
print(pfile)

with open(pfile) as f:
    dfo = pickle.load(f)

#for quick searches later
match = lambda x: concat_matches(dfo, x)

dfo = dfo.replace(77777, np.nan)
dfo = dfo.replace('77777', np.nan)

#task_pids = {k: sorted(set(v.index.get_level_values('pid')))
#             for (k, v) in task_frames.items()}

to_drop = set(dfo.index).intersection(excluded_all_tasks)

dfo = dfo.drop(to_drop)


c:/db_pickles/pickle - dfo-flat - 2014-10-13a.pickle

In [107]:
dfo.count()


Out[107]:
SCAL_session_day                      97
SCAL_session_time                     97
SCAL_session_isfemale                 97
SCAL_exclusion_jitterlinearmissing    97
SCAL_exclusion_rhythmadminerror       97
SCAL_sex_femalezero                   97
SCAL_participant_age                  97
SCAL_calc_wasivocab_totalrawscore     97
SCAL_calc_wasimatrix_totalscore       96
SCAL_calc_wasivocab_tscore            97
SCAL_calc_wasimatrix_tscore           96
SCAL_calc_wasi_tscore_total           96
SCAL_calc_fsiq2                       96
SCAL_calc_bfi_extraversion            97
SCAL_calc_bfi_agreeableness           97
...
I8P4_lagdev_mean               96
I8P4_lagdev_local_sq_abs       96
I8P4_lagdev_local              96
I8P4_lagdev_drift              96
I8L2_ints_count                96
I8L2_ints_mean                 96
I8L2_ints_variance             96
I8L2_ints_stdev                96
I8L2_ints_lag2corr             96
I8L2_lag2devsq_sum             96
I8L2_lag2devsq_count           96
I8L2_lag2devsq_mean            96
I8L2_lag2devsq_local_sq_abs    96
I8L2_lag2devsq_local           96
I8L2_lag2devsq_drift           90
Length: 577, dtype: int64

In [108]:
match('order').T


Out[108]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SCAL_session_taskorder 3. Lin, Iso, Jump 1. Iso, Lin, Jump 3. Lin, Iso, Jump 5. Jump, Iso, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 2. Iso, Jump, Lin ... 2. Iso, Jump, Lin 5. Jump, Iso, Lin 5. Jump, Iso, Lin 2. Iso, Jump, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 5. Jump, Iso, Lin 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso
SCAL_order_500ms_first 0 1 1 1 1 0 0 0 1 0 ... 0 0 0 0 1 1 1 1 0 1
SCAL_order_rhythmfirst 0 0 1 1 0 0 1 0 1 1 ... 0 1 1 0 0 1 1 0 0 0
SCAL_notes_qbasic_neurodisorder ADD & general anxiety ADHD ...
SCAL_qbasic_neurodisorderyn 0 0 1 0 0 0 1 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
SCAL_orders_500 1 0 0 0 0 1 1 1 0 1 ... 1 1 1 1 0 0 0 0 1 0
SCAL_orders_800 0 1 1 1 1 0 0 0 1 0 ... 0 0 0 0 1 1 1 1 0 1
SCAL_orders_iso 1 0 1 1 1 2 0 2 0 0 ... 0 1 1 0 1 2 1 2 0 2
SCAL_orders_phase 2 2 2 0 2 0 2 0 2 1 ... 1 0 0 1 2 0 0 0 2 0
SCAL_orders_linear 0 1 0 2 0 1 1 1 1 2 ... 2 2 2 2 0 1 2 1 1 1
SCAL_order_iso5t1 2 1 1 1 1 2 2 2 1 2 ... 2 2 2 2 1 1 1 1 2 1
SCAL_order_iso8t1 1 2 2 2 2 1 1 1 2 1 ... 1 1 1 1 2 2 2 2 1 2
SCAL_order_iso5t2 6 3 5 5 5 8 4 8 3 4 ... 4 6 6 4 5 7 5 7 4 7
SCAL_order_iso8t2 5 4 6 6 6 7 3 7 4 3 ... 3 5 5 3 6 8 6 8 3 8
SCAL_order_psh5t 8 7 7 3 7 4 8 4 7 6 ... 6 4 4 6 7 3 3 3 8 3
SCAL_order_psh8t 7 8 8 4 8 3 7 3 8 5 ... 5 3 3 5 8 4 4 4 7 4
SCAL_order_lin5t 4 5 3 7 3 6 6 6 5 8 ... 8 8 8 8 3 5 7 5 6 5
SCAL_order_lin8t 3 6 4 8 4 5 5 5 6 7 ... 7 7 7 7 4 6 8 6 5 6
SCAL_order_iso5j 12 9 11 11 11 14 10 14 9 10 ... 10 12 12 10 11 13 11 13 10 13
SCAL_order_iso8j 11 10 12 12 12 13 9 13 10 9 ... 9 11 11 9 12 14 12 14 9 14
SCAL_order_psh5j 14 13 13 9 13 10 14 10 13 12 ... 12 10 10 12 13 9 9 9 14 9
SCAL_order_psh8j 13 14 14 10 14 9 13 9 14 11 ... 11 9 9 11 14 10 10 10 13 10
SCAL_order_lin5j 10 11 9 13 9 12 12 12 11 14 ... 14 14 14 14 9 11 13 11 12 11
SCAL_order_lin8j 9 12 10 14 10 11 11 11 12 13 ... 13 13 13 13 10 12 14 12 11 12
SCAL_order_isip5 16 15 15 15 15 16 16 16 15 16 ... 16 16 16 16 15 15 15 15 16 15
SCAL_order_isip8 15 16 16 16 16 15 15 15 16 15 ... 15 15 15 15 16 16 16 16 15 16

26 rows × 97 columns


In [109]:
pasted_scales = '''

# the only 'order' variable needed when just looking at ISIP tasks
SCAL_order_500ms_first
SCAL_sex_femalezero

SCAL_orders_iso
SCAL_orders_phase
SCAL_orders_linear

SCAL_calc_wasivocab_tscore
SCAL_calc_wasimatrix_tscore
SCAL_calc_wasi_tscore_total
SCAL_calc_fsiq2

SCAL_calc_bfi_extraversion
SCAL_calc_bfi_agreeableness
SCAL_calc_bfi_conscientiousness
SCAL_calc_bfi_neuroticism
SCAL_calc_bfi_openness

# compare with usefulness of constructed index
SCAL_qmusic_dancelevel
SCAL_qmusic_instrumentlevel
SCAL_qmusic_drumlevel

SCAL_qmusic_behaviors_12_friendstaste  # comment
SCAL_qmusic_behaviors_13_sharingint
SCAL_qmusic_behaviors_14_getinterest
'''


pasted_isip = '''

#from: list(match('local$|drift$').columns)

I5P4_lagdev_local
I8P4_lagdev_local
I8P4_lagdev_drift
I5P4_lagdev_drift

I8L2_lag2devsq_local
I5L2_lag2devsq_local
I8L2_lag2devsq_drift
I5L2_lag2devsq_drift

#needed for filtering out a P that didn't do many taps
I8P4_ints_count  
I5P4_ints_count
I8L2_ints_count
I5L2_ints_count
'''

pasted_sms = '''



'''


def clean_pasted_vars(pstring):
    pasted_vars = pstring.split('\n') 

    #keep line contents before comment
    pasted_vars = [i.split('#')[0] for i in pasted_vars]  

    #remove hidden whitespace and blank lines
    pasted_vars = [i.strip() for i in pasted_vars]
    pasted_vars = filter(lambda i: i != "", pasted_vars)
    
    return pasted_vars


df_scales = dfo[clean_pasted_vars(pasted_scales)]

df_isip = dfo[clean_pasted_vars(pasted_isip)]
df_isip = df_isip.rename(columns=lambda x: x.replace('lagdev_',""))
df_isip = df_isip.rename(columns=lambda x: x.replace('lag2devsq_',""))

for c in ['I8P4_drift', 'I8P4_local']:
    ISI = 800
    df_isip[c + 'perc'] = df_isip[c] * 100. / ISI

for c in ['I5P4_drift', 'I5P4_local']:
    ISI = 500
    df_isip[c + 'perc'] = df_isip[c] * 100. / ISI

In [110]:
df_isip.T


Out[110]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
I5P4_local 2.918599 2.692996 2.764646 2.080451 1.397983 3.357435 3.454273 2.634599 2.834259 2.568266 ... 2.629085 1.898820 4.873864 2.944964 2.272517 2.884701 3.168178 1.649012 2.400801 2.143469
I8P4_local 3.871535 2.975526 3.093386 3.284952 2.381819 3.785594 2.633204 1.550475 2.653945 2.340668 ... 3.286044 1.706451 4.606419 2.177921 2.076461 2.668836 3.357831 2.107230 2.504026 3.187984
I8P4_drift 5.361354 2.148091 3.853557 2.249890 2.243927 4.145644 4.128266 2.268349 3.064198 4.878173 ... 4.578238 3.133905 3.512176 1.844496 1.585251 3.120648 2.771240 1.874337 2.308642 3.452782
I5P4_drift 3.622814 2.134364 2.614372 1.649681 1.262769 3.145559 2.873748 2.029501 2.445649 3.253087 ... 4.305536 1.431661 3.896161 2.387312 1.767129 3.003352 3.208083 1.540343 2.400271 2.112349
I8L2_local 4.633893 3.450640 3.821327 4.219624 3.002175 4.632072 3.191604 2.155060 3.318396 2.821277 ... 4.000088 2.019105 4.907391 2.770480 2.900587 3.620502 4.091578 2.564399 3.293310 4.138898
I5L2_local 3.668177 3.682978 3.654972 2.455875 1.859199 4.017225 4.294289 3.458614 3.633339 3.150296 ... 3.028811 2.350576 6.159270 3.805219 3.103455 3.341830 3.927692 1.882107 3.212816 2.759899
I8L2_drift 4.718045 1.249453 3.133114 NaN 1.302005 3.171907 3.713490 1.704434 2.328300 4.616893 ... 3.969590 2.942201 3.077659 0.685526 NaN 1.937290 1.487880 1.173633 0.868382 2.225864
I5L2_drift 2.861377 NaN 1.058009 1.009157 0.303845 2.242502 1.322690 NaN 0.901708 2.693363 ... 4.034357 0.360505 0.999005 NaN NaN 2.484712 2.214132 1.244817 1.096796 1.199764
I8P4_ints_count 134.000000 112.000000 109.000000 114.000000 116.000000 111.000000 121.000000 109.000000 124.000000 105.000000 ... 119.000000 114.000000 117.000000 119.000000 113.000000 78.000000 109.000000 111.000000 121.000000 105.000000
I5P4_ints_count 118.000000 107.000000 113.000000 117.000000 116.000000 108.000000 117.000000 118.000000 115.000000 106.000000 ... 113.000000 115.000000 117.000000 111.000000 113.000000 108.000000 113.000000 108.000000 120.000000 115.000000
I8L2_ints_count 134.000000 112.000000 109.000000 114.000000 116.000000 111.000000 121.000000 109.000000 124.000000 105.000000 ... 119.000000 114.000000 117.000000 119.000000 113.000000 78.000000 109.000000 111.000000 121.000000 105.000000
I5L2_ints_count 118.000000 107.000000 113.000000 117.000000 116.000000 108.000000 117.000000 118.000000 115.000000 106.000000 ... 113.000000 115.000000 117.000000 111.000000 113.000000 108.000000 113.000000 108.000000 120.000000 115.000000
I8P4_driftperc 0.670169 0.268511 0.481695 0.281236 0.280491 0.518206 0.516033 0.283544 0.383025 0.609772 ... 0.572280 0.391738 0.439022 0.230562 0.198156 0.390081 0.346405 0.234292 0.288580 0.431598
I8P4_localperc 0.483942 0.371941 0.386673 0.410619 0.297727 0.473199 0.329151 0.193809 0.331743 0.292584 ... 0.410755 0.213306 0.575802 0.272240 0.259558 0.333604 0.419729 0.263404 0.313003 0.398498
I5P4_driftperc 0.724563 0.426873 0.522874 0.329936 0.252554 0.629112 0.574750 0.405900 0.489130 0.650617 ... 0.861107 0.286332 0.779232 0.477462 0.353426 0.600670 0.641617 0.308069 0.480054 0.422470
I5P4_localperc 0.583720 0.538599 0.552929 0.416090 0.279597 0.671487 0.690855 0.526920 0.566852 0.513653 ... 0.525817 0.379764 0.974773 0.588993 0.454503 0.576940 0.633636 0.329802 0.480160 0.428694

16 rows × 97 columns


In [111]:
# (missing values propagate in pandas arithmetic operations)

total_hours = (dfo.SCAL_qmusic_drumhours + 
               dfo.SCAL_qmusic_instrumenthours + 
               dfo.SCAL_qmusic_dancehours)

any_hours = (total_hours > 0).astype(int)

#skipna = False: if any missing values, produce a missing-value result

max_skill_level = pd.concat([dfo.SCAL_qmusic_dancelevel, 
                             dfo.SCAL_qmusic_instrumentlevel, 
                             dfo.SCAL_qmusic_drumlevel], axis=1).T.max(skipna=False)

sum_skill_level = pd.concat([dfo.SCAL_qmusic_dancelevel, 
                             dfo.SCAL_qmusic_instrumentlevel, 
                             dfo.SCAL_qmusic_drumlevel], axis=1).T.sum(skipna=False)


social_importance = pd.concat([dfo.SCAL_qmusic_behaviors_12_friendstaste,
                               dfo.SCAL_qmusic_behaviors_13_sharingint,
                               dfo.SCAL_qmusic_behaviors_14_getinterest,], axis=1).T.sum(skipna=False)
# (there are no missing values for these three vars)


df_constructed = pd.concat(axis=1, 
                           objs=[any_hours, 
                                 max_skill_level, 
                                 sum_skill_level,
                                 social_importance], 
                           keys=['qmusic_calc_anyhours',
                                 'qmusic_calc_maxskill',
                                 'qmusic_calc_sumskill',
                                 'qmusic_calc_socialimp'])

In [112]:
df_constructed[df_constructed.qmusic_calc_maxskill.isnull()==True]


Out[112]:
qmusic_calc_anyhours qmusic_calc_maxskill qmusic_calc_sumskill qmusic_calc_socialimp
064 0 NaN NaN 8

In [113]:
def truncate(s):
    z_limit = 2.97
    maxval = s.mean() + z_limit * s.std()
    minval = s.mean() - z_limit * s.std()
    
    print "\n" + s.name
    print "limits: {}, {}".format(maxval, minval)
    assert minval < s.mean() < maxval
    
    def truncval(val):
        tstr = "truncated {} to {}."
        if val > maxval:
            print tstr.format(val, maxval)
            return maxval
        elif val < minval:            
            print tstr.format(val, minval)
            if 'DPsd' in s.name:
                print "WARNING: summary data should not have to be truncated in this direction."
            return minval
        else:
            return val
    
    out = s.apply(truncval)
    
    if 'DPsd' in s.name:
        #print('checking...')
        assert out.min() >= 0
    
    return out

def test_trunc(s):
    print "Original"
    s.hist()
    plt.show()
    print "Truncated"
    truncate(s).hist()
    plt.show()
    
    
test_trunc(df_isip.I5P4_drift)


Original
Truncated

I5P4_drift
limits: 5.52765569721, -0.222743472829
truncated 8.10995671656 to 5.52765569721.

In [114]:
drifts = concat_matches(df_isip, 'P4_drift$|local$').apply(truncate)
drifts.head(3)


I5P4_local
limits: 4.90761157606, 0.755692091143

I5P4_local
limits: 4.90761157606, 0.755692091143

I8P4_local
limits: 5.29598227358, 0.470629963811
truncated 6.55088307793 to 5.29598227358.

I8P4_drift
limits: 6.87780682384, -0.545362091766
truncated 8.26350638952 to 6.87780682384.
truncated 7.3133516044 to 6.87780682384.

I5P4_drift
limits: 5.52765569721, -0.222743472829
truncated 8.10995671656 to 5.52765569721.

I8L2_local
limits: 6.58549348051, 0.562338273468
truncated 9.0214050605 to 6.58549348051.

I5L2_local
limits: 6.29774676336, 0.891217901061
truncated 6.41196525963 to 6.29774676336.
Out[114]:
I5P4_local I8P4_local I8P4_drift I5P4_drift I8L2_local I5L2_local
015 2.918599 3.871535 5.361354 3.622814 4.633893 3.668177
016 2.692996 2.975526 2.148091 2.134364 3.450640 3.682978
017 2.764646 3.093386 3.853557 2.614372 3.821327 3.654972

In [115]:
drifts.plot(kind='scatter', x=0,y=1)

#Interesting issue with p. 55 (the outlier on IP54_drift).
# It appears legitimate: in general the local variation is very
# small-- but there's a lot of variability, because the subject
# drifted way down to around 400ms, then jumped up to around 550
# immediately-- so there were only a couple of intervals where
# there was a big change from one interval to the next.
# especially if smoothing across four intervals.....


Out[115]:
<matplotlib.axes.AxesSubplot at 0xd5f5940>

In [116]:
df_isip_out = pd.DataFrame(index = df_isip.index)

for c in df_isip.columns:
    if 'ints_count' in c: 
        df_isip_out[c] = df_isip[c]
    else:
        df_isip_out[c + '_trunc'] = truncate(df_isip[c])
    #del df_isip[c]


I5P4_local
limits: 4.90761157606, 0.755692091143

I8P4_local
limits: 5.29598227358, 0.470629963811
truncated 6.55088307793 to 5.29598227358.

I8P4_drift
limits: 6.87780682384, -0.545362091766
truncated 8.26350638952 to 6.87780682384.
truncated 7.3133516044 to 6.87780682384.

I5P4_drift
limits: 5.52765569721, -0.222743472829
truncated 8.10995671656 to 5.52765569721.

I8L2_local
limits: 6.58549348051, 0.562338273468
truncated 9.0214050605 to 6.58549348051.

I5L2_local
limits: 6.29774676336, 0.891217901061
truncated 6.41196525963 to 6.29774676336.

I8L2_drift
limits: 6.38719154181, -1.72402557872
truncated 7.87241198138 to 6.38719154181.
truncated 7.06373220524 to 6.38719154181.

I5L2_drift
limits: 5.13409149892, -1.67860799714
truncated 8.00023059382 to 5.13409149892.

I8P4_driftperc
limits: 0.85972585298, -0.0681702614708
truncated 1.03293829869 to 0.85972585298.
truncated 0.914168950551 to 0.85972585298.

I8P4_localperc
limits: 0.661997784197, 0.0588287454764
truncated 0.818860384741 to 0.661997784197.

I5P4_driftperc
limits: 1.10553113944, -0.0445486945659
truncated 1.62199134331 to 1.10553113944.

I5P4_localperc
limits: 0.981522315213, 0.151138418229

In [117]:
df_isip_out.T


Out[117]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
I5P4_local_trunc 2.918599 2.692996 2.764646 2.080451 1.397983 3.357435 3.454273 2.634599 2.834259 2.568266 ... 2.629085 1.898820 4.873864 2.944964 2.272517 2.884701 3.168178 1.649012 2.400801 2.143469
I8P4_local_trunc 3.871535 2.975526 3.093386 3.284952 2.381819 3.785594 2.633204 1.550475 2.653945 2.340668 ... 3.286044 1.706451 4.606419 2.177921 2.076461 2.668836 3.357831 2.107230 2.504026 3.187984
I8P4_drift_trunc 5.361354 2.148091 3.853557 2.249890 2.243927 4.145644 4.128266 2.268349 3.064198 4.878173 ... 4.578238 3.133905 3.512176 1.844496 1.585251 3.120648 2.771240 1.874337 2.308642 3.452782
I5P4_drift_trunc 3.622814 2.134364 2.614372 1.649681 1.262769 3.145559 2.873748 2.029501 2.445649 3.253087 ... 4.305536 1.431661 3.896161 2.387312 1.767129 3.003352 3.208083 1.540343 2.400271 2.112349
I8L2_local_trunc 4.633893 3.450640 3.821327 4.219624 3.002175 4.632072 3.191604 2.155060 3.318396 2.821277 ... 4.000088 2.019105 4.907391 2.770480 2.900587 3.620502 4.091578 2.564399 3.293310 4.138898
I5L2_local_trunc 3.668177 3.682978 3.654972 2.455875 1.859199 4.017225 4.294289 3.458614 3.633339 3.150296 ... 3.028811 2.350576 6.159270 3.805219 3.103455 3.341830 3.927692 1.882107 3.212816 2.759899
I8L2_drift_trunc 4.718045 1.249453 3.133114 NaN 1.302005 3.171907 3.713490 1.704434 2.328300 4.616893 ... 3.969590 2.942201 3.077659 0.685526 NaN 1.937290 1.487880 1.173633 0.868382 2.225864
I5L2_drift_trunc 2.861377 NaN 1.058009 1.009157 0.303845 2.242502 1.322690 NaN 0.901708 2.693363 ... 4.034357 0.360505 0.999005 NaN NaN 2.484712 2.214132 1.244817 1.096796 1.199764
I8P4_ints_count 134.000000 112.000000 109.000000 114.000000 116.000000 111.000000 121.000000 109.000000 124.000000 105.000000 ... 119.000000 114.000000 117.000000 119.000000 113.000000 78.000000 109.000000 111.000000 121.000000 105.000000
I5P4_ints_count 118.000000 107.000000 113.000000 117.000000 116.000000 108.000000 117.000000 118.000000 115.000000 106.000000 ... 113.000000 115.000000 117.000000 111.000000 113.000000 108.000000 113.000000 108.000000 120.000000 115.000000
I8L2_ints_count 134.000000 112.000000 109.000000 114.000000 116.000000 111.000000 121.000000 109.000000 124.000000 105.000000 ... 119.000000 114.000000 117.000000 119.000000 113.000000 78.000000 109.000000 111.000000 121.000000 105.000000
I5L2_ints_count 118.000000 107.000000 113.000000 117.000000 116.000000 108.000000 117.000000 118.000000 115.000000 106.000000 ... 113.000000 115.000000 117.000000 111.000000 113.000000 108.000000 113.000000 108.000000 120.000000 115.000000
I8P4_driftperc_trunc 0.670169 0.268511 0.481695 0.281236 0.280491 0.518206 0.516033 0.283544 0.383025 0.609772 ... 0.572280 0.391738 0.439022 0.230562 0.198156 0.390081 0.346405 0.234292 0.288580 0.431598
I8P4_localperc_trunc 0.483942 0.371941 0.386673 0.410619 0.297727 0.473199 0.329151 0.193809 0.331743 0.292584 ... 0.410755 0.213306 0.575802 0.272240 0.259558 0.333604 0.419729 0.263404 0.313003 0.398498
I5P4_driftperc_trunc 0.724563 0.426873 0.522874 0.329936 0.252554 0.629112 0.574750 0.405900 0.489130 0.650617 ... 0.861107 0.286332 0.779232 0.477462 0.353426 0.600670 0.641617 0.308069 0.480054 0.422470
I5P4_localperc_trunc 0.583720 0.538599 0.552929 0.416090 0.279597 0.671487 0.690855 0.526920 0.566852 0.513653 ... 0.525817 0.379764 0.974773 0.588993 0.454503 0.576940 0.633636 0.329802 0.480160 0.428694

16 rows × 97 columns


In [120]:
#list(match('DPm$|DPsd$'))
match('DP').T


Out[120]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SMSR_iso5t1_DPm -3.202915 -2.840413 -2.290274 -3.022502 -0.588655 -10.975295 -3.609441 -1.953836 -5.568016 -5.484477 ... -10.934370 -0.918811 -1.107983 -0.594511 -0.838101 -7.211448 -3.449031 -0.357402 -5.634339 -4.897263
SMSR_iso5t1_DPsd 8.582088 3.423481 3.607109 3.291210 2.583675 7.004012 4.608983 3.167766 3.170995 3.186261 ... 6.123362 2.799212 4.586392 4.075651 2.487950 5.184207 5.405130 2.827062 5.538719 4.245075
SMSR_iso5t1_DPct 109.000000 116.000000 117.000000 116.000000 116.000000 117.000000 116.000000 114.000000 116.000000 110.000000 ... 114.000000 115.000000 113.000000 112.000000 113.000000 114.000000 114.000000 114.000000 98.000000 114.000000
SMSR_iso8t1_DPm -3.198754 -2.827224 -13.311147 -0.553203 -2.327200 -3.092538 -1.458121 0.968610 -2.741571 0.354671 ... -5.737524 0.205687 -0.826352 -2.226755 -1.372491 -1.247007 1.162443 -0.060845 -9.056157 -3.304496
SMSR_iso8t1_DPsd 7.944039 2.964738 9.624027 5.005393 2.431597 6.505625 4.433459 2.268350 4.452189 4.964179 ... 8.144077 2.344456 6.235354 3.659721 2.334648 5.438937 3.613148 2.767637 4.298762 5.691151
SMSR_iso8t1_DPct 84.000000 104.000000 103.000000 106.000000 107.000000 101.000000 106.000000 104.000000 107.000000 103.000000 ... 98.000000 104.000000 104.000000 106.000000 106.000000 103.000000 106.000000 104.000000 102.000000 105.000000
SMSR_iso5t2_DPm -7.320309 -0.609046 -2.155283 -2.628721 -0.035660 -3.025222 -5.794925 -1.195840 -1.939757 0.793761 ... -10.848408 1.998485 -2.249983 -0.615855 -2.109468 -10.922451 -1.735612 1.315051 -11.177051 -7.462378
SMSR_iso5t2_DPsd 8.438450 3.522687 3.871627 3.373599 2.612512 7.021192 5.208270 3.488723 3.281671 5.276439 ... 5.511892 2.801852 6.319350 4.716004 3.143240 4.653159 4.076174 3.167036 5.855743 4.506521
SMSR_iso5t2_DPct 102.000000 115.000000 113.000000 116.000000 117.000000 112.000000 116.000000 117.000000 116.000000 98.000000 ... 114.000000 113.000000 109.000000 116.000000 117.000000 114.000000 114.000000 116.000000 114.000000 110.000000
SMSR_iso8t2_DPm NaN -4.064043 -4.258572 -0.759809 -1.704668 -1.823981 -1.913083 0.890989 -2.384110 0.150065 ... -1.732022 -0.082369 -6.790021 -1.854593 -1.226942 -3.161301 0.728819 -1.877539 -4.290588 -5.760608
SMSR_iso8t2_DPsd NaN 3.101403 5.063099 5.568829 3.404020 6.388830 4.368410 2.339890 4.170302 4.422124 ... 5.838884 2.772427 6.077328 3.511975 2.276168 4.564913 2.928230 3.214585 3.713862 5.989694
SMSR_iso8t2_DPct NaN 105.000000 105.000000 107.000000 107.000000 102.000000 106.000000 106.000000 107.000000 101.000000 ... 96.000000 104.000000 102.000000 102.000000 105.000000 105.000000 104.000000 105.000000 106.000000 101.000000
SMSR_lin5t_DPm NaN -4.440936 -8.097466 -4.785265 -2.822426 -7.847768 -8.081455 -2.905709 -2.321764 -1.148714 ... -13.171428 -1.070807 -11.101964 -4.147904 -3.269580 -6.060567 -2.044255 -4.613583 -6.337286 -7.769085
SMSR_lin5t_DPsd NaN 3.804005 4.959168 4.888448 4.628010 7.409937 5.736285 3.561546 4.532819 6.311407 ... 11.863541 3.458209 7.417736 4.439277 3.199540 6.582733 5.129986 4.204554 5.773415 7.357143
SMSR_lin5t_DPct NaN 155.000000 154.000000 154.000000 155.000000 149.000000 156.000000 155.000000 157.000000 149.000000 ... 121.000000 150.000000 148.000000 141.000000 154.000000 150.000000 154.000000 152.000000 157.000000 143.000000
SMSR_lin8t_DPm -1.466780 -2.207710 -1.394524 -0.767171 -1.167629 -2.313080 -0.667972 -0.196244 -2.514913 2.739635 ... -2.061360 2.228288 1.177425 -1.581256 -2.067663 -4.227632 2.762494 0.389404 -2.219642 -3.069498
SMSR_lin8t_DPsd 11.049303 3.797363 5.997794 4.568257 4.510050 5.714329 4.928837 3.213383 5.215915 5.288537 ... 7.265519 2.892864 6.500740 3.968508 3.315846 6.912513 4.916196 3.477552 5.289070 5.277031
SMSR_lin8t_DPct 114.000000 156.000000 151.000000 156.000000 156.000000 155.000000 156.000000 156.000000 157.000000 153.000000 ... 147.000000 154.000000 153.000000 146.000000 156.000000 134.000000 151.000000 155.000000 153.000000 150.000000
SMSR_phase5t_DPm -8.176227 -2.727189 -4.037511 -3.222491 -0.056542 -3.009335 -4.691215 -0.877772 -1.028469 2.607912 ... -7.511362 2.751770 -4.868650 -0.907275 -1.493659 -7.582498 3.159855 2.719712 -6.585747 -2.178178
SMSR_phase5t_DPsd 18.286210 4.636219 6.101449 6.015203 5.880533 8.832377 5.631446 5.549757 6.495490 8.974706 ... 8.618557 4.244219 7.097735 10.690847 4.345646 9.021404 8.359160 4.832540 6.673500 7.992546
SMSR_phase5t_DPct 143.000000 155.000000 154.000000 155.000000 156.000000 144.000000 156.000000 154.000000 157.000000 147.000000 ... 154.000000 153.000000 152.000000 155.000000 152.000000 148.000000 153.000000 153.000000 153.000000 149.000000
SMSR_phase8t_DPm -4.950975 -3.443382 -11.261584 2.320622 -0.540736 -2.155307 -3.021885 0.223643 -2.313902 1.552980 ... -5.626800 0.941978 -7.163684 -3.237063 -1.668319 -1.081923 2.320129 -0.321672 -5.452793 -3.261694
SMSR_phase8t_DPsd 30.292411 4.223427 6.801106 7.011985 3.834770 7.823846 5.464373 5.537968 5.319286 6.812584 ... 6.988509 5.164350 6.926644 5.851449 4.129328 7.146782 6.167211 4.298461 5.503316 11.802603
SMSR_phase8t_DPct 132.000000 156.000000 155.000000 156.000000 155.000000 154.000000 156.000000 154.000000 156.000000 120.000000 ... 154.000000 154.000000 147.000000 152.000000 156.000000 153.000000 152.000000 153.000000 154.000000 143.000000
SMSR_iso5j_DPm -7.884204 -6.820084 -5.270395 -0.552320 -3.343108 -6.488198 -3.588275 -2.625491 -5.292310 -7.260642 ... -11.322089 0.992438 -15.303739 -1.575724 -2.164280 -14.291407 2.168237 1.390152 -8.451801 -1.549586
SMSR_iso5j_DPsd 4.344289 5.180662 5.260285 6.896868 6.576153 6.369871 5.687223 5.210024 6.350138 5.514704 ... 6.121927 5.109652 8.639169 6.185684 4.871451 5.396906 8.370299 4.820479 5.017404 5.578518
SMSR_iso5j_DPct 103.000000 106.000000 106.000000 106.000000 107.000000 102.000000 106.000000 107.000000 107.000000 100.000000 ... 105.000000 104.000000 96.000000 104.000000 105.000000 101.000000 104.000000 104.000000 104.000000 105.000000
SMSR_iso8j_DPm NaN -6.218841 -10.064092 -4.987855 -9.660025 -7.975747 -8.929854 1.649018 -6.925825 -2.223467 ... -12.004863 -2.133730 -11.930682 -5.926679 -5.893919 -4.632284 0.058726 -5.148439 -7.448876 -10.669810
SMSR_iso8j_DPsd NaN 5.435017 8.475535 5.883866 5.660678 6.168150 5.515570 5.788754 6.075278 6.741509 ... 8.035791 3.907462 6.181960 5.100964 5.519451 4.905857 6.811418 4.125815 4.164116 5.553144
SMSR_iso8j_DPct NaN 106.000000 107.000000 105.000000 107.000000 106.000000 107.000000 106.000000 107.000000 100.000000 ... 103.000000 104.000000 103.000000 104.000000 106.000000 106.000000 106.000000 106.000000 104.000000 107.000000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
SMSR_phase5t_nrm_DPm NaN -3.494445 -6.023428 -4.044406 -0.096803 -4.921805 -6.586367 -1.663917 -2.646197 NaN ... -5.554789 1.637512 -2.384650 -2.340948 -1.170212 NaN 8.454378 2.841347 -6.206281 NaN
SMSR_phase5t_nrm_DPsd NaN 3.447075 5.069596 4.472898 3.686194 6.961424 5.077150 3.764374 4.054006 NaN ... 8.672406 2.702044 7.063415 6.217980 3.661628 NaN 4.156459 3.642057 6.085368 NaN
SMSR_phase5t_nrm_DPct NaN 58.000000 50.000000 58.000000 58.000000 51.000000 58.000000 50.000000 62.000000 NaN ... 50.000000 49.000000 55.000000 54.000000 49.000000 NaN 49.000000 49.000000 50.000000 NaN
SMSR_phase8t_nrm_DPm NaN -2.738324 -12.613996 2.200945 -0.550671 -2.789755 -1.841289 -1.104148 -2.114991 NaN ... -8.864571 1.167334 -6.006915 -3.760204 -2.231690 NaN 0.507251 -0.716042 -5.191294 NaN
SMSR_phase8t_nrm_DPsd NaN 2.685532 7.588504 4.675063 2.654889 5.970898 4.366131 2.256640 4.987632 NaN ... 6.390464 2.777576 5.458047 3.717879 3.070182 NaN 4.423234 2.651028 4.713386 NaN
SMSR_phase8t_nrm_DPct NaN 65.000000 57.000000 61.000000 57.000000 60.000000 61.000000 50.000000 61.000000 NaN ... 50.000000 57.000000 56.000000 56.000000 62.000000 NaN 48.000000 56.000000 50.000000 NaN
SMSR_phase5j_nrm_DPm -11.148969 -3.325956 -2.762491 -7.626405 -7.175838 -8.508095 -5.800228 -10.196515 -3.477511 -4.929744 ... -11.247372 1.597960 -10.049117 -3.918322 -5.244204 NaN -6.636588 -4.443068 NaN NaN
SMSR_phase5j_nrm_DPsd 9.831048 4.675775 8.093669 6.432369 8.611338 7.374434 6.468034 7.577475 5.779530 9.186420 ... 7.306804 6.047968 8.028764 6.527422 5.395921 NaN 5.343027 5.422876 NaN NaN
SMSR_phase5j_nrm_DPct 46.000000 58.000000 52.000000 56.000000 58.000000 59.000000 58.000000 50.000000 62.000000 49.000000 ... 49.000000 44.000000 45.000000 49.000000 62.000000 NaN 50.000000 50.000000 NaN NaN
SMSR_phase8j_nrm_DPm -9.921800 -5.485820 -11.594407 0.012137 -1.695137 -13.082447 -9.177448 -1.539006 -5.807808 -1.357039 ... -11.380748 -4.138816 -11.430767 -8.163726 -8.763223 -2.627231 -4.346571 -4.187103 NaN -12.947842
SMSR_phase8j_nrm_DPsd 6.769322 3.882251 7.146704 5.035754 9.043339 9.028088 5.704594 5.154211 6.207823 6.458522 ... 6.210700 4.500170 7.667751 4.890995 5.952829 7.561797 6.687784 4.882306 NaN 5.635160
SMSR_phase8j_nrm_DPct 49.000000 62.000000 57.000000 58.000000 62.000000 50.000000 62.000000 58.000000 62.000000 50.000000 ... 58.000000 50.000000 61.000000 57.000000 55.000000 56.000000 58.000000 58.000000 NaN 58.000000
SMSR_lint_610690_DPm -5.904932 -3.629545 -5.018314 -1.965972 -1.046649 -6.135196 -4.141515 -1.082157 -2.521295 1.547984 ... -13.675623 0.477503 -5.995810 -2.384010 -1.992656 -3.592472 1.334023 -2.638309 -3.920254 -2.610475
SMSR_lint_610690_DPsd 14.214295 3.647491 6.254805 4.769801 5.044258 7.952984 6.309685 3.805393 4.389249 5.555110 ... 12.938677 3.283291 9.406283 4.755764 3.414272 5.783784 5.413948 4.346650 5.520486 5.307701
SMSR_lint_610690_DPct 70.000000 89.000000 90.000000 89.000000 90.000000 87.000000 90.000000 90.000000 90.000000 90.000000 ... 85.000000 90.000000 88.000000 85.000000 90.000000 90.000000 90.000000 89.000000 90.000000 87.000000
SMSR_linj_610690_DPm -11.469696 -4.611525 -6.104771 NaN -2.766766 -5.984495 -1.798480 -2.341115 -6.378774 -2.082932 ... NaN 1.346563 -17.484409 -4.747037 -3.671017 -10.843955 -1.537152 -1.352451 -3.832061 -5.911024
SMSR_linj_610690_DPsd 10.788868 6.692989 14.833960 NaN 12.881389 7.355279 10.090107 7.873377 7.713142 7.518116 ... NaN 6.278382 9.227213 6.783321 5.841060 7.550096 7.191732 4.922011 7.405898 11.879577
SMSR_linj_610690_DPct 88.000000 89.000000 86.000000 NaN 84.000000 88.000000 90.000000 90.000000 90.000000 90.000000 ... NaN 90.000000 88.000000 90.000000 89.000000 90.000000 90.000000 90.000000 90.000000 90.000000
SMSR_lint_700800_DPm NaN -2.836999 -5.324347 -2.588808 -0.534889 -3.920463 -2.249709 -1.423945 -3.538202 2.053367 ... NaN -0.203763 -2.421917 -3.037278 -3.049772 -3.185119 0.806381 -1.259571 -4.405488 -6.258277
SMSR_lint_700800_DPsd NaN 4.188447 6.278797 5.991372 4.800754 6.452870 5.338793 3.525517 5.302861 5.957211 ... NaN 3.474329 9.170531 4.447257 3.353788 8.064835 3.622448 3.628472 5.876414 9.321889
SMSR_lint_700800_DPct NaN 100.000000 99.000000 99.000000 100.000000 97.000000 101.000000 100.000000 102.000000 94.000000 ... NaN 95.000000 97.000000 90.000000 99.000000 81.000000 99.000000 98.000000 102.000000 87.000000
SMSR_lint_500600_DPm NaN -2.935850 -3.679656 -3.081273 -4.239167 -4.696701 -6.162629 -2.058697 -1.059976 -0.138641 ... -1.890201 1.884941 -6.121897 -3.185709 -2.553906 -8.668644 -0.270897 -2.702535 -3.943322 -6.960489
SMSR_lint_500600_DPsd NaN 3.763389 7.094297 4.338958 3.428162 6.109977 7.413205 3.699728 4.834872 6.247794 ... 9.205697 3.589876 9.466895 3.924627 2.970704 5.239500 6.837897 5.603176 5.913442 4.700504
SMSR_lint_500600_DPct NaN 102.000000 96.000000 102.000000 101.000000 101.000000 101.000000 101.000000 102.000000 98.000000 ... 96.000000 99.000000 97.000000 95.000000 101.000000 94.000000 96.000000 100.000000 98.000000 99.000000
SMSR_linj_700800_DPm -4.543913 -5.536776 -6.491154 NaN NaN -9.080940 -5.285475 -1.128587 -6.143924 1.101778 ... NaN -0.760195 NaN -5.754093 -2.759417 -4.056123 -2.236343 -2.155906 -6.996401 -8.532782
SMSR_linj_700800_DPsd 8.344733 5.658566 8.351930 NaN NaN 7.484739 7.572755 5.879357 6.601137 6.673417 ... NaN 5.307915 NaN 5.832539 5.775269 5.086778 5.948107 5.018592 4.189604 10.555065
SMSR_linj_700800_DPct 82.000000 102.000000 94.000000 NaN NaN 95.000000 101.000000 99.000000 100.000000 93.000000 ... NaN 98.000000 NaN 101.000000 98.000000 99.000000 97.000000 97.000000 91.000000 98.000000
SMSR_linj_500600_DPm -9.168428 -4.356788 -6.390442 NaN -6.003091 -9.124480 -4.398286 -5.446709 -3.476588 -3.543392 ... -16.546086 -0.700534 -14.919772 -5.130468 -1.959767 -12.389941 -2.258212 -1.509382 -4.102402 -2.914103
SMSR_linj_500600_DPsd 9.660953 6.813903 14.502102 NaN 9.550193 11.361092 10.270239 11.104630 8.447056 6.763741 ... 11.726403 7.186386 13.197983 8.916590 6.994755 8.385819 9.242493 10.248535 5.844371 8.385738
SMSR_linj_500600_DPct 88.000000 102.000000 83.000000 NaN 80.000000 91.000000 83.000000 99.000000 99.000000 91.000000 ... 79.000000 99.000000 96.000000 100.000000 101.000000 98.000000 94.000000 101.000000 99.000000 98.000000

96 rows × 97 columns


In [121]:
df_sms = match('DP')

df_sms_out = pd.DataFrame(index = df_sms.index)

for c in df_sms.columns:    
    trimname = 's_' + c[5:]    
    if ("DPct" in c) or ("DPm" in c):
        df_sms_out[trimname] = df_sms[c]
    else:
        df_sms_out[trimname + '_trunc'] = truncate(df_sms[c])
    
df_sms_out.T


SMSR_iso5t1_DPsd
limits: 8.60087044757, 0.203275967148
truncated 10.6900950028 to 8.60087044757.
truncated 9.63481950073 to 8.60087044757.

SMSR_iso8t1_DPsd
limits: 9.87651971902, -0.763594860008

SMSR_iso5t2_DPsd
limits: 10.3558807623, -0.608126417552
truncated 11.8612907326 to 10.3558807623.
truncated 13.5791256854 to 10.3558807623.

SMSR_iso8t2_DPsd
limits: 9.59878522787, -0.712988554483
truncated 11.8655977545 to 9.59878522787.

SMSR_lin5t_DPsd
limits: 10.8070076853, 0.158185111673
truncated 11.8635409538 to 10.8070076853.

SMSR_lin8t_DPsd
limits: 10.0280231673, 0.294474921876
truncated 11.0493026542 to 10.0280231673.
truncated 11.0265619805 to 10.0280231673.

SMSR_phase5t_DPsd
limits: 16.7535407837, -2.54631807882
truncated 18.2862100575 to 16.7535407837.
truncated 27.5098384048 to 16.7535407837.
truncated 17.0772452267 to 16.7535407837.

SMSR_phase8t_DPsd
limits: 25.0649109419, -9.78174786142
truncated 30.2924106841 to 25.0649109419.
truncated 29.3655735002 to 25.0649109419.
truncated 31.3696714705 to 25.0649109419.
truncated 35.3537566366 to 25.0649109419.

SMSR_iso5j_DPsd
limits: 9.76005728626, 1.95406060147
truncated 10.4387748387 to 9.76005728626.
truncated 10.4313044455 to 9.76005728626.
truncated 11.36798779 to 9.76005728626.

SMSR_iso8j_DPsd
limits: 10.4665189452, 1.68514052117

SMSR_lin5j_DPsd
limits: 11.2443131701, 1.72243300701
truncated 11.4630163932 to 11.2443131701.

SMSR_lin8j_DPsd
limits: 12.8418099592, 3.35718360955
truncated 13.7019946774 to 12.8418099592.

SMSR_phase5j_DPsd
limits: 19.4590993849, -2.59075231868
truncated 29.2275328231 to 19.4590993849.
truncated 19.5795283111 to 19.4590993849.
truncated 22.6466134823 to 19.4590993849.

SMSR_phase8j_DPsd
limits: 25.8521354004, -8.65582694262
truncated 27.0387786759 to 25.8521354004.
truncated 32.4262272662 to 25.8521354004.
truncated 33.7193492796 to 25.8521354004.
truncated 39.7947850535 to 25.8521354004.

SMSR_phase8j_psk_DPsd
limits: 14.1453144241, 1.0792810039
truncated 14.9105059267 to 14.1453144241.
truncated 17.3588478049 to 14.1453144241.

SMSR_phase8j_psr_DPsd
limits: 14.1638879692, 1.07619626791
truncated 14.9105059267 to 14.1638879692.
truncated 16.8504597429 to 14.1638879692.
truncated 14.7323511959 to 14.1638879692.

SMSR_phase8t_psk_DPsd
limits: 17.2730425126, -1.16562527323
truncated 19.5324307943 to 17.2730425126.
truncated 19.6005924732 to 17.2730425126.

SMSR_phase8t_psr_DPsd
limits: 17.1087270275, -0.937097835085
truncated 19.5324307943 to 17.1087270275.
truncated 19.1031420415 to 17.1087270275.

SMSR_phase5j_psk_DPsd
limits: 15.3704159134, 3.24397748433

SMSR_phase5j_psr_DPsd
limits: 15.4729098117, 3.17698380026

SMSR_phase5t_psk_DPsd
limits: 15.6260466573, 0.594047665708
truncated 16.5909759069 to 15.6260466573.

SMSR_phase5t_psr_DPsd
limits: 15.4723438306, 0.772750861551
truncated 15.9840524432 to 15.4723438306.
truncated 15.5549046358 to 15.4723438306.

SMSR_phase5t_nrm_DPsd
limits: 9.57906060484, 0.0863548982969
truncated 11.167463781 to 9.57906060484.

SMSR_phase8t_nrm_DPsd
limits: 9.70501390299, -0.527050525708
truncated 10.2613675719 to 9.70501390299.

SMSR_phase5j_nrm_DPsd
limits: 10.7605241168, 1.75917296527

SMSR_phase8j_nrm_DPsd
limits: 11.2631174044, 1.25496949494

SMSR_lint_610690_DPsd
limits: 13.7149460015, -1.33088075612
truncated 14.2142951 to 13.7149460015.
truncated 13.7196181966 to 13.7149460015.

SMSR_linj_610690_DPsd
limits: 14.9057616429, 1.91966356957

SMSR_lint_700800_DPsd
limits: 12.9349960801, -1.2967639024

SMSR_lint_500600_DPsd
limits: 11.9556365861, -0.349007960833
truncated 15.0164273031 to 11.9556365861.

SMSR_linj_700800_DPsd
limits: 11.94468936, 1.82632330467
truncated 13.0389206706 to 11.94468936.

SMSR_linj_500600_DPsd
limits: 14.3891779854, 3.45206607345
truncated 14.5021015221 to 14.3891779854.
Out[121]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
s_iso5t1_DPm -3.202915 -2.840413 -2.290274 -3.022502 -0.588655 -10.975295 -3.609441 -1.953836 -5.568016 -5.484477 ... -10.934370 -0.918811 -1.107983 -0.594511 -0.838101 -7.211448 -3.449031 -0.357402 -5.634339 -4.897263
s_iso5t1_DPsd_trunc 8.582088 3.423481 3.607109 3.291210 2.583675 7.004012 4.608983 3.167766 3.170995 3.186261 ... 6.123362 2.799212 4.586392 4.075651 2.487950 5.184207 5.405130 2.827062 5.538719 4.245075
s_iso5t1_DPct 109.000000 116.000000 117.000000 116.000000 116.000000 117.000000 116.000000 114.000000 116.000000 110.000000 ... 114.000000 115.000000 113.000000 112.000000 113.000000 114.000000 114.000000 114.000000 98.000000 114.000000
s_iso8t1_DPm -3.198754 -2.827224 -13.311147 -0.553203 -2.327200 -3.092538 -1.458121 0.968610 -2.741571 0.354671 ... -5.737524 0.205687 -0.826352 -2.226755 -1.372491 -1.247007 1.162443 -0.060845 -9.056157 -3.304496
s_iso8t1_DPsd_trunc 7.944039 2.964738 9.624027 5.005393 2.431597 6.505625 4.433459 2.268350 4.452189 4.964179 ... 8.144077 2.344456 6.235354 3.659721 2.334648 5.438937 3.613148 2.767637 4.298762 5.691151
s_iso8t1_DPct 84.000000 104.000000 103.000000 106.000000 107.000000 101.000000 106.000000 104.000000 107.000000 103.000000 ... 98.000000 104.000000 104.000000 106.000000 106.000000 103.000000 106.000000 104.000000 102.000000 105.000000
s_iso5t2_DPm -7.320309 -0.609046 -2.155283 -2.628721 -0.035660 -3.025222 -5.794925 -1.195840 -1.939757 0.793761 ... -10.848408 1.998485 -2.249983 -0.615855 -2.109468 -10.922451 -1.735612 1.315051 -11.177051 -7.462378
s_iso5t2_DPsd_trunc 8.438450 3.522687 3.871627 3.373599 2.612512 7.021192 5.208270 3.488723 3.281671 5.276439 ... 5.511892 2.801852 6.319350 4.716004 3.143240 4.653159 4.076174 3.167036 5.855743 4.506521
s_iso5t2_DPct 102.000000 115.000000 113.000000 116.000000 117.000000 112.000000 116.000000 117.000000 116.000000 98.000000 ... 114.000000 113.000000 109.000000 116.000000 117.000000 114.000000 114.000000 116.000000 114.000000 110.000000
s_iso8t2_DPm NaN -4.064043 -4.258572 -0.759809 -1.704668 -1.823981 -1.913083 0.890989 -2.384110 0.150065 ... -1.732022 -0.082369 -6.790021 -1.854593 -1.226942 -3.161301 0.728819 -1.877539 -4.290588 -5.760608
s_iso8t2_DPsd_trunc NaN 3.101403 5.063099 5.568829 3.404020 6.388830 4.368410 2.339890 4.170302 4.422124 ... 5.838884 2.772427 6.077328 3.511975 2.276168 4.564913 2.928230 3.214585 3.713862 5.989694
s_iso8t2_DPct NaN 105.000000 105.000000 107.000000 107.000000 102.000000 106.000000 106.000000 107.000000 101.000000 ... 96.000000 104.000000 102.000000 102.000000 105.000000 105.000000 104.000000 105.000000 106.000000 101.000000
s_lin5t_DPm NaN -4.440936 -8.097466 -4.785265 -2.822426 -7.847768 -8.081455 -2.905709 -2.321764 -1.148714 ... -13.171428 -1.070807 -11.101964 -4.147904 -3.269580 -6.060567 -2.044255 -4.613583 -6.337286 -7.769085
s_lin5t_DPsd_trunc NaN 3.804005 4.959168 4.888448 4.628010 7.409937 5.736285 3.561546 4.532819 6.311407 ... 10.807008 3.458209 7.417736 4.439277 3.199540 6.582733 5.129986 4.204554 5.773415 7.357143
s_lin5t_DPct NaN 155.000000 154.000000 154.000000 155.000000 149.000000 156.000000 155.000000 157.000000 149.000000 ... 121.000000 150.000000 148.000000 141.000000 154.000000 150.000000 154.000000 152.000000 157.000000 143.000000
s_lin8t_DPm -1.466780 -2.207710 -1.394524 -0.767171 -1.167629 -2.313080 -0.667972 -0.196244 -2.514913 2.739635 ... -2.061360 2.228288 1.177425 -1.581256 -2.067663 -4.227632 2.762494 0.389404 -2.219642 -3.069498
s_lin8t_DPsd_trunc 10.028023 3.797363 5.997794 4.568257 4.510050 5.714329 4.928837 3.213383 5.215915 5.288537 ... 7.265519 2.892864 6.500740 3.968508 3.315846 6.912513 4.916196 3.477552 5.289070 5.277031
s_lin8t_DPct 114.000000 156.000000 151.000000 156.000000 156.000000 155.000000 156.000000 156.000000 157.000000 153.000000 ... 147.000000 154.000000 153.000000 146.000000 156.000000 134.000000 151.000000 155.000000 153.000000 150.000000
s_phase5t_DPm -8.176227 -2.727189 -4.037511 -3.222491 -0.056542 -3.009335 -4.691215 -0.877772 -1.028469 2.607912 ... -7.511362 2.751770 -4.868650 -0.907275 -1.493659 -7.582498 3.159855 2.719712 -6.585747 -2.178178
s_phase5t_DPsd_trunc 16.753541 4.636219 6.101449 6.015203 5.880533 8.832377 5.631446 5.549757 6.495490 8.974706 ... 8.618557 4.244219 7.097735 10.690847 4.345646 9.021404 8.359160 4.832540 6.673500 7.992546
s_phase5t_DPct 143.000000 155.000000 154.000000 155.000000 156.000000 144.000000 156.000000 154.000000 157.000000 147.000000 ... 154.000000 153.000000 152.000000 155.000000 152.000000 148.000000 153.000000 153.000000 153.000000 149.000000
s_phase8t_DPm -4.950975 -3.443382 -11.261584 2.320622 -0.540736 -2.155307 -3.021885 0.223643 -2.313902 1.552980 ... -5.626800 0.941978 -7.163684 -3.237063 -1.668319 -1.081923 2.320129 -0.321672 -5.452793 -3.261694
s_phase8t_DPsd_trunc 25.064911 4.223427 6.801106 7.011985 3.834770 7.823846 5.464373 5.537968 5.319286 6.812584 ... 6.988509 5.164350 6.926644 5.851449 4.129328 7.146782 6.167211 4.298461 5.503316 11.802603
s_phase8t_DPct 132.000000 156.000000 155.000000 156.000000 155.000000 154.000000 156.000000 154.000000 156.000000 120.000000 ... 154.000000 154.000000 147.000000 152.000000 156.000000 153.000000 152.000000 153.000000 154.000000 143.000000
s_iso5j_DPm -7.884204 -6.820084 -5.270395 -0.552320 -3.343108 -6.488198 -3.588275 -2.625491 -5.292310 -7.260642 ... -11.322089 0.992438 -15.303739 -1.575724 -2.164280 -14.291407 2.168237 1.390152 -8.451801 -1.549586
s_iso5j_DPsd_trunc 4.344289 5.180662 5.260285 6.896868 6.576153 6.369871 5.687223 5.210024 6.350138 5.514704 ... 6.121927 5.109652 8.639169 6.185684 4.871451 5.396906 8.370299 4.820479 5.017404 5.578518
s_iso5j_DPct 103.000000 106.000000 106.000000 106.000000 107.000000 102.000000 106.000000 107.000000 107.000000 100.000000 ... 105.000000 104.000000 96.000000 104.000000 105.000000 101.000000 104.000000 104.000000 104.000000 105.000000
s_iso8j_DPm NaN -6.218841 -10.064092 -4.987855 -9.660025 -7.975747 -8.929854 1.649018 -6.925825 -2.223467 ... -12.004863 -2.133730 -11.930682 -5.926679 -5.893919 -4.632284 0.058726 -5.148439 -7.448876 -10.669810
s_iso8j_DPsd_trunc NaN 5.435017 8.475535 5.883866 5.660678 6.168150 5.515570 5.788754 6.075278 6.741509 ... 8.035791 3.907462 6.181960 5.100964 5.519451 4.905857 6.811418 4.125815 4.164116 5.553144
s_iso8j_DPct NaN 106.000000 107.000000 105.000000 107.000000 106.000000 107.000000 106.000000 107.000000 100.000000 ... 103.000000 104.000000 103.000000 104.000000 106.000000 106.000000 106.000000 106.000000 104.000000 107.000000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
s_phase5t_nrm_DPm NaN -3.494445 -6.023428 -4.044406 -0.096803 -4.921805 -6.586367 -1.663917 -2.646197 NaN ... -5.554789 1.637512 -2.384650 -2.340948 -1.170212 NaN 8.454378 2.841347 -6.206281 NaN
s_phase5t_nrm_DPsd_trunc NaN 3.447075 5.069596 4.472898 3.686194 6.961424 5.077150 3.764374 4.054006 NaN ... 8.672406 2.702044 7.063415 6.217980 3.661628 NaN 4.156459 3.642057 6.085368 NaN
s_phase5t_nrm_DPct NaN 58.000000 50.000000 58.000000 58.000000 51.000000 58.000000 50.000000 62.000000 NaN ... 50.000000 49.000000 55.000000 54.000000 49.000000 NaN 49.000000 49.000000 50.000000 NaN
s_phase8t_nrm_DPm NaN -2.738324 -12.613996 2.200945 -0.550671 -2.789755 -1.841289 -1.104148 -2.114991 NaN ... -8.864571 1.167334 -6.006915 -3.760204 -2.231690 NaN 0.507251 -0.716042 -5.191294 NaN
s_phase8t_nrm_DPsd_trunc NaN 2.685532 7.588504 4.675063 2.654889 5.970898 4.366131 2.256640 4.987632 NaN ... 6.390464 2.777576 5.458047 3.717879 3.070182 NaN 4.423234 2.651028 4.713386 NaN
s_phase8t_nrm_DPct NaN 65.000000 57.000000 61.000000 57.000000 60.000000 61.000000 50.000000 61.000000 NaN ... 50.000000 57.000000 56.000000 56.000000 62.000000 NaN 48.000000 56.000000 50.000000 NaN
s_phase5j_nrm_DPm -11.148969 -3.325956 -2.762491 -7.626405 -7.175838 -8.508095 -5.800228 -10.196515 -3.477511 -4.929744 ... -11.247372 1.597960 -10.049117 -3.918322 -5.244204 NaN -6.636588 -4.443068 NaN NaN
s_phase5j_nrm_DPsd_trunc 9.831048 4.675775 8.093669 6.432369 8.611338 7.374434 6.468034 7.577475 5.779530 9.186420 ... 7.306804 6.047968 8.028764 6.527422 5.395921 NaN 5.343027 5.422876 NaN NaN
s_phase5j_nrm_DPct 46.000000 58.000000 52.000000 56.000000 58.000000 59.000000 58.000000 50.000000 62.000000 49.000000 ... 49.000000 44.000000 45.000000 49.000000 62.000000 NaN 50.000000 50.000000 NaN NaN
s_phase8j_nrm_DPm -9.921800 -5.485820 -11.594407 0.012137 -1.695137 -13.082447 -9.177448 -1.539006 -5.807808 -1.357039 ... -11.380748 -4.138816 -11.430767 -8.163726 -8.763223 -2.627231 -4.346571 -4.187103 NaN -12.947842
s_phase8j_nrm_DPsd_trunc 6.769322 3.882251 7.146704 5.035754 9.043339 9.028088 5.704594 5.154211 6.207823 6.458522 ... 6.210700 4.500170 7.667751 4.890995 5.952829 7.561797 6.687784 4.882306 NaN 5.635160
s_phase8j_nrm_DPct 49.000000 62.000000 57.000000 58.000000 62.000000 50.000000 62.000000 58.000000 62.000000 50.000000 ... 58.000000 50.000000 61.000000 57.000000 55.000000 56.000000 58.000000 58.000000 NaN 58.000000
s_lint_610690_DPm -5.904932 -3.629545 -5.018314 -1.965972 -1.046649 -6.135196 -4.141515 -1.082157 -2.521295 1.547984 ... -13.675623 0.477503 -5.995810 -2.384010 -1.992656 -3.592472 1.334023 -2.638309 -3.920254 -2.610475
s_lint_610690_DPsd_trunc 13.714946 3.647491 6.254805 4.769801 5.044258 7.952984 6.309685 3.805393 4.389249 5.555110 ... 12.938677 3.283291 9.406283 4.755764 3.414272 5.783784 5.413948 4.346650 5.520486 5.307701
s_lint_610690_DPct 70.000000 89.000000 90.000000 89.000000 90.000000 87.000000 90.000000 90.000000 90.000000 90.000000 ... 85.000000 90.000000 88.000000 85.000000 90.000000 90.000000 90.000000 89.000000 90.000000 87.000000
s_linj_610690_DPm -11.469696 -4.611525 -6.104771 NaN -2.766766 -5.984495 -1.798480 -2.341115 -6.378774 -2.082932 ... NaN 1.346563 -17.484409 -4.747037 -3.671017 -10.843955 -1.537152 -1.352451 -3.832061 -5.911024
s_linj_610690_DPsd_trunc 10.788868 6.692989 14.833960 NaN 12.881389 7.355279 10.090107 7.873377 7.713142 7.518116 ... NaN 6.278382 9.227213 6.783321 5.841060 7.550096 7.191732 4.922011 7.405898 11.879577
s_linj_610690_DPct 88.000000 89.000000 86.000000 NaN 84.000000 88.000000 90.000000 90.000000 90.000000 90.000000 ... NaN 90.000000 88.000000 90.000000 89.000000 90.000000 90.000000 90.000000 90.000000 90.000000
s_lint_700800_DPm NaN -2.836999 -5.324347 -2.588808 -0.534889 -3.920463 -2.249709 -1.423945 -3.538202 2.053367 ... NaN -0.203763 -2.421917 -3.037278 -3.049772 -3.185119 0.806381 -1.259571 -4.405488 -6.258277
s_lint_700800_DPsd_trunc NaN 4.188447 6.278797 5.991372 4.800754 6.452870 5.338793 3.525517 5.302861 5.957211 ... NaN 3.474329 9.170531 4.447257 3.353788 8.064835 3.622448 3.628472 5.876414 9.321889
s_lint_700800_DPct NaN 100.000000 99.000000 99.000000 100.000000 97.000000 101.000000 100.000000 102.000000 94.000000 ... NaN 95.000000 97.000000 90.000000 99.000000 81.000000 99.000000 98.000000 102.000000 87.000000
s_lint_500600_DPm NaN -2.935850 -3.679656 -3.081273 -4.239167 -4.696701 -6.162629 -2.058697 -1.059976 -0.138641 ... -1.890201 1.884941 -6.121897 -3.185709 -2.553906 -8.668644 -0.270897 -2.702535 -3.943322 -6.960489
s_lint_500600_DPsd_trunc NaN 3.763389 7.094297 4.338958 3.428162 6.109977 7.413205 3.699728 4.834872 6.247794 ... 9.205697 3.589876 9.466895 3.924627 2.970704 5.239500 6.837897 5.603176 5.913442 4.700504
s_lint_500600_DPct NaN 102.000000 96.000000 102.000000 101.000000 101.000000 101.000000 101.000000 102.000000 98.000000 ... 96.000000 99.000000 97.000000 95.000000 101.000000 94.000000 96.000000 100.000000 98.000000 99.000000
s_linj_700800_DPm -4.543913 -5.536776 -6.491154 NaN NaN -9.080940 -5.285475 -1.128587 -6.143924 1.101778 ... NaN -0.760195 NaN -5.754093 -2.759417 -4.056123 -2.236343 -2.155906 -6.996401 -8.532782
s_linj_700800_DPsd_trunc 8.344733 5.658566 8.351930 NaN NaN 7.484739 7.572755 5.879357 6.601137 6.673417 ... NaN 5.307915 NaN 5.832539 5.775269 5.086778 5.948107 5.018592 4.189604 10.555065
s_linj_700800_DPct 82.000000 102.000000 94.000000 NaN NaN 95.000000 101.000000 99.000000 100.000000 93.000000 ... NaN 98.000000 NaN 101.000000 98.000000 99.000000 97.000000 97.000000 91.000000 98.000000
s_linj_500600_DPm -9.168428 -4.356788 -6.390442 NaN -6.003091 -9.124480 -4.398286 -5.446709 -3.476588 -3.543392 ... -16.546086 -0.700534 -14.919772 -5.130468 -1.959767 -12.389941 -2.258212 -1.509382 -4.102402 -2.914103
s_linj_500600_DPsd_trunc 9.660953 6.813903 14.389178 NaN 9.550193 11.361092 10.270239 11.104630 8.447056 6.763741 ... 11.726403 7.186386 13.197983 8.916590 6.994755 8.385819 9.242493 10.248535 5.844371 8.385738
s_linj_500600_DPct 88.000000 102.000000 83.000000 NaN 80.000000 91.000000 83.000000 99.000000 99.000000 91.000000 ... 79.000000 99.000000 96.000000 100.000000 101.000000 98.000000 94.000000 101.000000 99.000000 98.000000

96 rows × 97 columns


In [122]:
df_nonzero_transformed = match('nonzero')
df_log_transformed = match('ln1p')

isip_using = ['I5P4_local_trunc',
              'I8P4_local_trunc',
              'I5P4_drift_trunc',
              'I8P4_drift_trunc',]

df_log_isips = np.log(df_isip_out[isip_using])
df_log_isips.columns = [c + "_log" for c in df_log_isips.columns]


to_log = [c for c in df_sms_out if "DPsd" in c]
df_log_sms = np.log(df_sms_out[to_log])
df_log_sms.columns = [c + "_log" for c in df_log_sms.columns]

df_log_sms


Out[122]:
s_iso5t1_DPsd_trunc_log s_iso8t1_DPsd_trunc_log s_iso5t2_DPsd_trunc_log s_iso8t2_DPsd_trunc_log s_lin5t_DPsd_trunc_log s_lin8t_DPsd_trunc_log s_phase5t_DPsd_trunc_log s_phase8t_DPsd_trunc_log s_iso5j_DPsd_trunc_log s_iso8j_DPsd_trunc_log ... s_phase5t_nrm_DPsd_trunc_log s_phase8t_nrm_DPsd_trunc_log s_phase5j_nrm_DPsd_trunc_log s_phase8j_nrm_DPsd_trunc_log s_lint_610690_DPsd_trunc_log s_linj_610690_DPsd_trunc_log s_lint_700800_DPsd_trunc_log s_lint_500600_DPsd_trunc_log s_linj_700800_DPsd_trunc_log s_linj_500600_DPsd_trunc_log
015 2.149677 2.072422 2.132799 NaN NaN 2.305383 2.818610 3.221469 1.468862 NaN ... NaN NaN 2.285546 1.912401 2.618486 2.378515 NaN NaN 2.121631 2.268092
016 1.230658 1.086789 1.259224 1.131855 1.336055 1.334307 1.533899 1.440647 1.644933 1.692863 ... 1.237526 0.987879 1.542395 1.356415 1.294040 1.901060 1.432330 1.325320 1.733171 1.918965
017 1.282907 2.264263 1.353675 1.621979 1.601238 1.791392 1.808526 1.917085 1.660185 2.137184 ... 1.623261 2.026634 2.091082 1.966651 1.833350 2.696919 1.837178 1.959291 2.122493 2.666476
018 1.191255 1.610516 1.215980 1.717185 1.586875 1.519132 1.794290 1.947621 1.931067 1.772214 ... 1.498037 1.542243 1.861343 1.616563 1.562305 NaN 1.790320 1.467634 NaN NaN
019 0.949213 0.888548 0.960312 1.224957 1.532127 1.506308 1.771647 1.344109 1.883450 1.733544 ... 1.304594 0.976403 2.153080 2.202028 1.618251 2.555784 1.568773 1.232024 NaN 2.256561
020 1.946483 1.872667 1.948933 1.854551 2.002822 1.742977 2.178424 2.057176 1.851579 1.819399 ... 1.940384 1.786897 1.998019 2.200341 2.073547 1.995418 1.864525 1.809923 2.012866 2.430195
021 1.528007 1.489180 1.650248 1.474399 1.746812 1.595103 1.728366 1.698249 1.738222 1.707575 ... 1.624750 1.473877 1.866872 1.741272 1.842086 2.311555 1.675000 2.003263 2.024557 2.329250
022 1.153027 0.819053 1.249536 0.850104 1.270195 1.167324 1.713754 1.711628 1.650584 1.755917 ... 1.325582 0.813877 2.025180 1.639814 1.336419 2.063487 1.260027 1.308259 1.771447 2.407362
024 1.154046 1.493396 1.188353 1.427988 1.511344 1.651714 1.871108 1.671339 1.848477 1.804228 ... 1.399705 1.606961 1.754322 1.825810 1.479158 2.042926 1.668247 1.575855 1.887242 2.133818
025 1.158848 1.602248 1.663251 1.486620 1.842359 1.665542 2.194410 1.918771 1.707418 1.908284 ... NaN NaN 2.217726 1.865401 1.714718 2.017316 1.784602 1.832228 1.898132 1.911576
027 1.214988 0.828005 1.164947 0.866506 1.186399 1.280419 1.769993 1.497272 1.665816 1.558870 ... 1.022401 1.141060 NaN 1.406696 1.267500 2.307323 1.217068 1.283543 2.480287 NaN
028 1.366933 1.220317 1.463579 1.125788 1.408837 1.402979 1.706406 1.600644 1.632847 1.634404 ... 1.732058 1.030859 1.826140 1.704556 1.613654 1.895121 1.317712 1.434900 1.676633 1.955105
029 1.586056 2.132944 1.685272 2.148802 2.265091 NaN 1.969318 2.183792 1.712491 1.953943 ... 1.398667 2.122931 1.593972 1.801566 2.588409 2.008597 2.496306 NaN 2.133729 2.217507
030 1.215353 1.032932 1.198445 1.286700 1.361396 1.611186 2.042024 1.660030 1.780308 1.653158 ... NaN 1.359501 1.771705 1.732649 1.645449 1.736958 1.524256 1.541147 1.597709 2.159650
032 0.730980 0.953815 0.931665 0.957351 0.962286 1.067413 1.307490 1.427185 1.375821 1.585096 ... 0.994635 0.891385 1.650457 1.317304 0.989258 2.119965 0.864621 1.329376 2.015059 2.187460
033 1.294672 1.289049 1.381905 1.184637 1.381818 1.264568 1.775199 1.551936 1.539494 1.517684 ... NaN 1.060631 2.111017 1.719209 1.456811 1.891067 1.317890 1.326461 1.542612 1.903832
034 0.950003 0.880918 1.032546 0.927776 1.277905 1.136625 1.275862 1.369869 1.417779 1.459033 ... 1.086269 1.016607 1.212294 1.629381 1.325006 1.831234 1.102818 1.561855 1.811249 2.092147
035 1.772024 1.604723 1.813727 1.506809 1.742526 1.511419 1.629492 1.688118 1.754228 2.106827 ... 1.537437 1.526862 1.633169 2.083243 1.873733 2.237716 1.956526 2.083396 NaN 2.365780
036 1.988666 2.270262 2.058694 2.255787 2.143534 1.993123 2.197500 2.439745 2.000589 2.120761 ... 2.053092 1.975793 2.296213 2.389359 2.119564 2.178587 2.357026 2.117718 2.305887 2.283641
038 1.349000 1.186314 1.200030 1.327411 1.935074 1.529049 1.610191 1.689371 1.606894 2.047864 ... 1.136915 1.425693 1.881336 NaN 2.175734 2.258559 1.555299 1.539148 1.885687 NaN
039 1.190395 1.659190 1.420872 1.269212 1.571259 1.533313 1.913795 1.979875 1.778573 1.474032 ... 1.729659 1.417454 1.952375 2.201466 1.540354 2.270023 1.713960 1.721283 2.113891 2.105389
040 1.507903 1.388848 1.335028 1.330698 1.602610 1.286600 1.975731 1.560555 1.633493 1.717268 ... 1.642887 1.135644 1.771934 1.778303 1.605856 2.250770 1.563731 1.299501 2.097774 2.608676
041 1.268629 1.156100 1.231555 1.221466 1.476011 1.342788 1.660153 1.653653 1.642166 1.665112 ... 1.056194 1.028205 NaN 1.796749 1.638167 2.196335 1.407219 1.563882 1.993542 NaN
043 1.770687 2.020416 1.887461 1.393694 2.027668 2.004970 2.065970 1.779030 1.948347 1.954462 ... 1.736332 1.753461 1.700811 2.048392 2.187593 2.030588 2.366285 2.023421 2.260785 2.052124
044 1.237567 1.075156 1.281449 1.319819 1.817071 1.671288 1.755334 1.633415 1.607361 1.897884 ... NaN 1.481575 1.889121 1.628732 1.751771 2.436343 2.054416 1.517867 1.882276 2.350594
046 1.626021 1.682230 1.643886 1.272820 1.666841 1.768587 1.989147 1.736674 1.737062 1.860388 ... 1.877527 1.274797 2.111023 1.642103 1.838421 1.999868 1.642178 1.813503 1.671312 2.184300
047 1.380242 1.398949 1.650766 1.582803 1.722535 1.598411 1.792947 2.037111 1.736514 1.849484 ... 1.338539 1.514411 1.848916 1.932931 1.743906 1.997943 1.709317 1.714107 2.056160 2.176172
048 1.610828 1.472176 1.656246 1.803049 2.078463 1.711675 1.863482 2.087143 1.538067 1.518730 ... 1.410348 2.133366 1.622487 1.472279 1.994289 2.021399 2.135832 1.854509 1.928630 2.161561
049 2.151863 1.945161 NaN NaN NaN 2.305383 2.515234 3.221469 2.278298 NaN ... 2.259580 NaN NaN NaN NaN 2.579684 NaN NaN NaN NaN
051 1.390749 1.182839 1.382496 1.271641 1.423009 1.359170 1.739229 1.898883 1.676281 1.539143 ... 1.715900 1.543755 2.140252 1.421400 1.626791 2.082926 1.548873 1.403939 1.931787 1.984162
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
091 1.449116 1.211588 1.333326 1.168292 1.566006 1.257787 1.597946 1.549170 1.499167 1.487188 ... 1.312618 1.201153 1.522880 1.496527 1.446165 1.612523 1.643412 1.396902 1.671687 2.032135
092 1.345000 1.487471 1.275930 1.485463 1.854254 1.759965 1.798088 1.784696 1.695897 1.930878 ... 1.593130 1.598847 2.037424 1.668468 1.788295 2.010605 2.163077 1.642071 1.604979 2.064925
093 1.585773 1.546694 1.637662 1.430066 1.811371 1.605881 1.860800 1.731256 1.739643 1.994637 ... 1.786350 1.494587 1.604424 1.937038 1.623223 2.210662 1.841742 1.887073 1.920084 2.071302
094 1.657986 1.631690 1.760155 1.702428 1.819522 1.731488 1.982937 2.056478 1.873470 2.043344 ... 1.623816 2.033164 1.822206 2.118901 1.959386 2.100451 2.046481 1.737708 1.894117 2.346369
095 1.350039 1.402022 1.648476 1.212946 1.625273 1.426034 1.679399 1.596319 1.818386 1.422117 ... 1.285899 1.673913 1.732342 1.435371 1.706072 2.514380 1.645232 1.619249 2.432453 2.160559
096 1.183688 1.257725 1.506640 1.262937 1.537900 1.572777 1.588762 1.686659 1.821079 1.710031 ... 1.223411 1.358376 1.693641 1.816137 1.590050 1.837736 1.514546 1.615584 1.791156 2.050975
097 1.553118 1.441133 1.734186 1.340447 1.491838 1.498280 1.793375 1.706463 1.681646 1.762506 ... 1.643316 1.475694 1.937992 1.937221 1.609334 2.240401 1.476850 1.596564 1.803030 2.166801
098 1.394417 1.117052 1.130257 1.176846 1.352986 1.430074 1.464891 1.556825 1.552316 1.439605 ... 1.235928 NaN 1.843422 1.353870 1.610200 1.781598 1.290688 1.401033 1.582123 1.988594
099 1.447692 1.463197 1.539633 1.345424 1.514859 1.873326 2.132830 2.150460 1.987616 1.823680 ... 1.521154 1.685878 1.807076 1.931085 1.817515 2.103678 1.696299 1.735805 1.902442 2.210110
100 1.499580 1.267989 1.156310 1.214675 1.667821 1.396713 1.642567 1.625895 1.685254 1.548109 ... 1.394467 1.579856 2.033780 1.962556 1.610190 2.184703 1.583766 1.712850 1.852059 2.106062
101 1.704965 1.360519 1.659895 1.557076 1.841867 1.731204 1.996825 1.913525 1.830431 1.909514 ... 1.593418 1.842436 1.767468 1.950009 1.987316 2.057702 1.736324 1.606754 1.904446 2.066410
102 1.392795 1.183798 1.490049 1.149026 1.563346 1.734824 1.683533 1.647868 1.773656 1.655395 ... 1.104012 1.233142 1.900904 1.670638 1.966298 1.993827 1.593197 1.761838 1.810530 2.153517
103 1.375605 1.484798 1.526401 1.354565 1.499534 1.789324 1.735533 1.555921 1.849073 1.791545 ... 1.196766 1.245895 1.907844 1.988744 1.822989 1.998910 1.575008 1.866607 1.864822 2.111631
104 1.545028 1.747669 1.566731 NaN 2.231160 1.791717 2.622076 2.938816 NaN 1.596170 ... NaN NaN NaN 2.238897 2.198332 NaN 2.041397 2.050829 NaN 2.473611
105 1.801153 1.739995 1.901948 2.243605 2.276922 2.141057 1.944161 2.155787 1.862689 2.063905 ... 1.783304 1.549508 2.134887 NaN 2.275106 2.419920 2.286061 2.179113 NaN 2.522852
107 1.192646 1.036598 1.323714 1.213214 1.377351 1.461565 1.456936 1.391359 1.649415 1.594488 ... NaN 1.219295 NaN NaN 1.461152 1.954683 1.554497 1.276529 1.820042 2.091235
108 1.524372 1.342621 1.494930 1.296824 1.550446 1.647128 1.853779 1.669186 1.553136 1.678444 ... 1.763007 1.432985 1.862758 1.727473 1.806187 2.094723 1.748951 1.554200 1.690032 2.452959
109 1.405253 1.173891 1.531845 1.431531 1.680366 1.786235 2.200408 2.016352 1.675157 1.709617 ... NaN NaN NaN 1.611400 1.989616 1.932359 1.704973 1.999620 1.626547 1.956897
110 1.345261 1.356246 1.296935 1.043001 1.357591 1.223697 1.538119 1.445808 1.534092 1.467484 ... 1.218798 0.844649 1.516383 1.374264 1.385988 2.029942 1.366578 1.406781 1.841802 2.002637
111 1.402827 1.438419 1.544511 1.533494 1.394360 1.456176 1.612266 1.943491 1.767450 1.599098 ... 1.442153 1.315708 1.677284 1.753042 1.284367 2.027371 1.518075 1.502315 1.830891 2.010234
112 1.812111 2.097291 1.706908 1.764540 2.380195 1.983140 2.153918 1.944267 1.811877 2.083905 ... 2.160146 1.854807 1.988806 1.826274 2.560221 NaN NaN 2.219823 NaN 2.461843
113 1.029338 0.852053 1.030281 1.019723 1.240751 1.062247 1.445558 1.641779 1.631131 1.362888 ... 0.994008 1.021579 1.799722 1.504115 1.188846 1.837112 1.245401 1.278118 1.669199 1.972188
114 1.523094 1.830235 1.843616 1.804565 2.003874 1.871916 1.959776 1.935375 2.156306 1.821635 ... 1.954929 1.697091 2.083031 2.037023 2.241378 2.222157 2.215995 2.247801 NaN 2.580064
115 1.405030 1.297387 1.550962 1.256179 1.490492 1.378390 2.369388 1.766689 1.822238 1.629429 ... 1.827445 1.313153 1.876012 1.587396 1.559357 1.914467 1.492288 1.367271 1.763452 2.187914
116 0.911459 0.847861 1.145254 0.822493 1.163007 1.198713 1.469174 1.418115 1.583392 1.708278 ... 1.297908 1.121737 1.685643 1.783867 1.227964 1.764912 1.210090 1.088799 1.753585 1.945161
117 1.645617 1.693584 1.537546 1.518399 1.884450 1.933333 2.199600 1.966662 1.685826 1.590430 ... NaN NaN NaN 2.023109 1.755058 2.021560 2.087513 1.656226 1.626645 2.126542
118 1.687348 1.284579 1.405159 1.074398 1.635103 1.592535 2.123358 1.819247 2.124690 1.918600 ... 1.424663 1.486871 1.675792 1.900283 1.688979 1.972932 1.287150 1.922480 1.783073 2.223812
119 1.039238 1.017994 1.152796 1.167698 1.436168 1.246329 1.575372 1.458257 1.572873 1.417264 ... 1.292549 0.974948 1.690626 1.585618 1.469405 1.593717 1.288812 1.723334 1.613149 2.327135
120 1.711763 1.458327 1.767423 1.312072 1.753264 1.665642 1.898144 1.705351 1.612913 1.426504 ... 1.805887 1.550407 NaN NaN 1.708466 2.002277 1.770947 1.777228 1.432606 1.765479
121 1.445759 1.738912 1.505525 1.790040 1.995672 1.663364 2.078509 2.468320 1.718923 1.714364 ... NaN NaN NaN 1.729026 1.669159 2.474821 2.232365 1.547670 2.356606 2.126532

97 rows × 32 columns


In [123]:
df_to_analyze = pd.concat(axis=1, 
                          objs=[df_scales, 
                                df_constructed,
                                df_log_transformed,
                                df_nonzero_transformed,
                                df_isip_out,
                                df_log_isips,
                                df_sms_out,
                                df_log_sms,
                                ])

In [124]:
#concat_matches(df_to_analyze, 'I?P4_local_trunc|I?P4_drift_trunc').T
concat_matches(df_to_analyze, 'log$').T


Out[124]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
I5P4_local_trunc_log 1.071104 0.990654 1.016912 0.732585 0.335030 1.211177 1.239612 0.968731 1.041781 0.943231 ... 0.966636 0.641233 1.583887 1.080096 0.820888 1.059421 1.153157 0.500176 0.875803 0.762425
I8P4_local_trunc_log 1.353651 1.090421 1.129266 1.189352 0.867865 1.331203 0.968201 0.438561 0.976047 0.850436 ... 1.189684 0.534416 1.527451 0.778371 0.730665 0.981642 1.211295 0.745374 0.917900 1.159389
I5P4_drift_trunc_log 1.287251 0.758169 0.961024 0.500582 0.233307 1.145992 1.055617 0.707790 0.894311 1.179604 ... 1.459902 0.358835 1.359992 0.870168 0.569356 1.099729 1.165674 0.432005 0.875582 0.747801
I8P4_drift_trunc_log 1.679217 0.764580 1.348997 0.810881 0.808227 1.422058 1.417857 0.819052 1.119786 1.584771 ... 1.521314 1.142280 1.256236 0.612206 0.460743 1.138041 1.019295 0.628255 0.836660 1.239180
s_iso5t1_DPsd_trunc_log 2.149677 1.230658 1.282907 1.191255 0.949213 1.946483 1.528007 1.153027 1.154046 1.158848 ... 1.812111 1.029338 1.523094 1.405030 0.911459 1.645617 1.687348 1.039238 1.711763 1.445759
s_iso8t1_DPsd_trunc_log 2.072422 1.086789 2.264263 1.610516 0.888548 1.872667 1.489180 0.819053 1.493396 1.602248 ... 2.097291 0.852053 1.830235 1.297387 0.847861 1.693584 1.284579 1.017994 1.458327 1.738912
s_iso5t2_DPsd_trunc_log 2.132799 1.259224 1.353675 1.215980 0.960312 1.948933 1.650248 1.249536 1.188353 1.663251 ... 1.706908 1.030281 1.843616 1.550962 1.145254 1.537546 1.405159 1.152796 1.767423 1.505525
s_iso8t2_DPsd_trunc_log NaN 1.131855 1.621979 1.717185 1.224957 1.854551 1.474399 0.850104 1.427988 1.486620 ... 1.764540 1.019723 1.804565 1.256179 0.822493 1.518399 1.074398 1.167698 1.312072 1.790040
s_lin5t_DPsd_trunc_log NaN 1.336055 1.601238 1.586875 1.532127 2.002822 1.746812 1.270195 1.511344 1.842359 ... 2.380195 1.240751 2.003874 1.490492 1.163007 1.884450 1.635103 1.436168 1.753264 1.995672
s_lin8t_DPsd_trunc_log 2.305383 1.334307 1.791392 1.519132 1.506308 1.742977 1.595103 1.167324 1.651714 1.665542 ... 1.983140 1.062247 1.871916 1.378390 1.198713 1.933333 1.592535 1.246329 1.665642 1.663364
s_phase5t_DPsd_trunc_log 2.818610 1.533899 1.808526 1.794290 1.771647 2.178424 1.728366 1.713754 1.871108 2.194410 ... 2.153918 1.445558 1.959776 2.369388 1.469174 2.199600 2.123358 1.575372 1.898144 2.078509
s_phase8t_DPsd_trunc_log 3.221469 1.440647 1.917085 1.947621 1.344109 2.057176 1.698249 1.711628 1.671339 1.918771 ... 1.944267 1.641779 1.935375 1.766689 1.418115 1.966662 1.819247 1.458257 1.705351 2.468320
s_iso5j_DPsd_trunc_log 1.468862 1.644933 1.660185 1.931067 1.883450 1.851579 1.738222 1.650584 1.848477 1.707418 ... 1.811877 1.631131 2.156306 1.822238 1.583392 1.685826 2.124690 1.572873 1.612913 1.718923
s_iso8j_DPsd_trunc_log NaN 1.692863 2.137184 1.772214 1.733544 1.819399 1.707575 1.755917 1.804228 1.908284 ... 2.083905 1.362888 1.821635 1.629429 1.708278 1.590430 1.918600 1.417264 1.426504 1.714364
s_lin5j_DPsd_trunc_log 2.015058 1.649390 1.871980 NaN NaN 1.917798 1.620410 2.070804 1.787552 1.761812 ... NaN 1.395519 2.419863 1.719042 1.585274 2.041828 1.756458 1.810486 1.675215 2.132917
s_lin8j_DPsd_trunc_log 2.116002 1.890228 2.313866 2.099799 2.200428 2.308440 2.141411 1.997351 2.083193 2.043251 ... 2.183058 1.850603 2.326427 1.971129 1.811144 2.128409 2.040155 1.914217 1.817584 2.400156
s_phase5j_DPsd_trunc_log 2.422405 1.774558 2.262908 2.144661 2.739569 2.087969 1.802783 2.051451 2.067474 2.104918 ... 2.155658 2.254326 2.238179 1.951401 1.814308 2.232164 1.880433 1.736957 2.057894 2.333196
s_phase8j_DPsd_trunc_log 2.540202 1.624128 2.170845 1.740630 2.359743 2.445744 1.774009 1.614812 1.849079 1.919424 ... 1.981102 1.731812 2.011558 1.692822 1.864767 2.026249 1.911932 1.699957 1.899737 2.077448
s_phase8j_psk_DPsd_trunc_log 1.661158 1.612924 2.027585 1.761192 2.566462 2.115852 1.885312 1.602012 1.797048 2.073824 ... 2.199807 2.058860 1.900451 1.992052 1.584186 2.110640 1.740867 1.964700 1.941108 2.165882
s_phase8j_psr_DPsd_trunc_log 1.822314 1.612924 2.027585 1.761192 2.566462 2.115852 1.885312 1.602012 1.797048 2.073824 ... 2.199807 2.058860 1.900451 1.992052 1.584186 2.080504 1.740867 1.964700 1.941108 2.165882
s_phase8t_psk_DPsd_trunc_log 2.448769 1.412633 2.169406 1.752274 1.517247 2.419211 1.976305 2.309860 1.974328 NaN ... 1.951454 2.154065 1.922902 2.187971 1.518313 1.894646 1.690675 1.524311 2.218610 2.187834
s_phase8t_psr_DPsd_trunc_log 2.527728 1.616072 2.169406 1.752274 1.517247 2.416043 1.976305 2.309860 1.974328 1.670599 ... 1.951454 2.163158 1.922902 2.187971 1.626977 1.977654 1.690675 1.627795 2.218610 2.246768
s_phase5j_psk_DPsd_trunc_log 2.293633 2.047200 2.600479 2.094738 2.409779 2.460101 1.940695 2.372425 2.388867 2.356191 ... 2.361161 2.327977 2.337696 2.297506 1.949023 2.458198 2.037533 1.767952 2.101445 2.328501
s_phase5j_psr_DPsd_trunc_log 2.346532 2.047200 2.553754 2.094738 2.409779 2.493829 1.940695 2.372425 2.388867 2.356191 ... 2.361161 2.327977 2.474297 2.297506 1.949023 2.458198 2.037533 1.767952 2.101445 2.328501
s_phase5t_psk_DPsd_trunc_log 2.748939 1.801437 2.241850 1.851662 1.960636 2.496431 1.970924 2.282671 2.420283 2.235988 ... 2.235615 1.836924 2.023312 2.012784 0.754183 2.469274 1.925059 2.033728 1.849398 2.562076
s_phase5t_psr_DPsd_trunc_log 2.739054 1.801437 2.241850 1.851662 1.960636 2.428850 1.970924 2.282671 2.420283 2.202548 ... 2.235615 1.836924 2.047796 2.035536 0.754183 2.477226 1.925059 2.033728 1.949939 2.524329
s_phase5t_nrm_DPsd_trunc_log NaN 1.237526 1.623261 1.498037 1.304594 1.940384 1.624750 1.325582 1.399705 NaN ... 2.160146 0.994008 1.954929 1.827445 1.297908 NaN 1.424663 1.292549 1.805887 NaN
s_phase8t_nrm_DPsd_trunc_log NaN 0.987879 2.026634 1.542243 0.976403 1.786897 1.473877 0.813877 1.606961 NaN ... 1.854807 1.021579 1.697091 1.313153 1.121737 NaN 1.486871 0.974948 1.550407 NaN
s_phase5j_nrm_DPsd_trunc_log 2.285546 1.542395 2.091082 1.861343 2.153080 1.998019 1.866872 2.025180 1.754322 2.217726 ... 1.988806 1.799722 2.083031 1.876012 1.685643 NaN 1.675792 1.690626 NaN NaN
s_phase8j_nrm_DPsd_trunc_log 1.912401 1.356415 1.966651 1.616563 2.202028 2.200341 1.741272 1.639814 1.825810 1.865401 ... 1.826274 1.504115 2.037023 1.587396 1.783867 2.023109 1.900283 1.585618 NaN 1.729026
s_lint_610690_DPsd_trunc_log 2.618486 1.294040 1.833350 1.562305 1.618251 2.073547 1.842086 1.336419 1.479158 1.714718 ... 2.560221 1.188846 2.241378 1.559357 1.227964 1.755058 1.688979 1.469405 1.708466 1.669159
s_linj_610690_DPsd_trunc_log 2.378515 1.901060 2.696919 NaN 2.555784 1.995418 2.311555 2.063487 2.042926 2.017316 ... NaN 1.837112 2.222157 1.914467 1.764912 2.021560 1.972932 1.593717 2.002277 2.474821
s_lint_700800_DPsd_trunc_log NaN 1.432330 1.837178 1.790320 1.568773 1.864525 1.675000 1.260027 1.668247 1.784602 ... NaN 1.245401 2.215995 1.492288 1.210090 2.087513 1.287150 1.288812 1.770947 2.232365
s_lint_500600_DPsd_trunc_log NaN 1.325320 1.959291 1.467634 1.232024 1.809923 2.003263 1.308259 1.575855 1.832228 ... 2.219823 1.278118 2.247801 1.367271 1.088799 1.656226 1.922480 1.723334 1.777228 1.547670
s_linj_700800_DPsd_trunc_log 2.121631 1.733171 2.122493 NaN NaN 2.012866 2.024557 1.771447 1.887242 1.898132 ... NaN 1.669199 NaN 1.763452 1.753585 1.626645 1.783073 1.613149 1.432606 2.356606
s_linj_500600_DPsd_trunc_log 2.268092 1.918965 2.666476 NaN 2.256561 2.430195 2.329250 2.407362 2.133818 1.911576 ... 2.461843 1.972188 2.580064 2.187914 1.945161 2.126542 2.223812 2.327135 1.765479 2.126532

36 rows × 97 columns


In [125]:
# TO DO:
# Calculate z scores for each DPsd
# Calculate the mean of the two z scores for each 500/800 pairing
# See if the value of this still correlates with the 500-first/800-first order variable


remove_unused = [c for c in df_to_analyze.columns 
                 if (   '_psk_' in c 
                     or 's_lint_' in c 
                     or 's_linj_' in c)]
for c in remove_unused:
    del df_to_analyze[c]
    

to_combine = concat_matches(df_to_analyze, 'DPsd_trunc')
#for p in list(to_combine.columns):
    #print(p)

for c in ['I5P4_local_trunc',
          'I8P4_local_trunc',
          'I5P4_drift_trunc',
          'I8P4_drift_trunc',]:
    to_combine[c] = df_to_analyze[c]
    
    
z_to_combine = (to_combine.mean() - to_combine) / to_combine.std()
#proper column-wise z score output was confirmed


df_to_analyze['IP4_local_trunc_mz58'] = (  z_to_combine['I5P4_local_trunc'] 
                                          + z_to_combine['I8P4_local_trunc']) / 2

df_to_analyze['IP4_drift_trunc_mz58'] = (  z_to_combine['I5P4_drift_trunc'] 
                                          + z_to_combine['I8P4_drift_trunc']) / 2


df_to_analyze['iso_j_DPsd_trunc_mz58'] = (  z_to_combine['s_iso5j_DPsd_trunc'] 
                                          + z_to_combine['s_iso8j_DPsd_trunc']) / 2

df_to_analyze['iso_t1_DPsd_trunc_mz58'] = (  z_to_combine['s_iso5t1_DPsd_trunc'] 
                                           + z_to_combine['s_iso8t1_DPsd_trunc']) / 2

df_to_analyze['iso_t2_DPsd_trunc_mz58'] = (  z_to_combine['s_iso5t2_DPsd_trunc'] 
                                           + z_to_combine['s_iso8t2_DPsd_trunc']) / 2

df_to_analyze['lin_j_DPsd_trunc_mz58'] = (  z_to_combine['s_lin5j_DPsd_trunc'] 
                                          + z_to_combine['s_lin8j_DPsd_trunc']) / 2

df_to_analyze['lin_t_DPsd_trunc_mz58'] = (  z_to_combine['s_lin5t_DPsd_trunc'] 
                                          + z_to_combine['s_lin8t_DPsd_trunc']) / 2

df_to_analyze['phase_j_nrm_DPsd_trunc_mz58'] = (  z_to_combine['s_phase5j_nrm_DPsd_trunc'] 
                                                + z_to_combine['s_phase8j_nrm_DPsd_trunc']) / 2

df_to_analyze['phase_j_psr_DPsd_trunc_mz58'] = (  z_to_combine['s_phase5j_psr_DPsd_trunc'] 
                                                + z_to_combine['s_phase8j_psr_DPsd_trunc']) / 2

df_to_analyze['phase_t_nrm_DPsd_trunc_mz58'] = (  z_to_combine['s_phase5t_nrm_DPsd_trunc'] 
                                                + z_to_combine['s_phase8t_nrm_DPsd_trunc']) / 2

df_to_analyze['phase_t_psr_DPsd_trunc_mz58'] = (  z_to_combine['s_phase5t_psr_DPsd_trunc'] 
                                                + z_to_combine['s_phase8t_psr_DPsd_trunc']) / 2
#null values propagate to new measure (confirmed)

#df_to_analyze['IP4_drift_trunc_mz58'][20:]

In [126]:
update = {'measure': 'subset_to_spss',
          'updated': '2014-10-15c'}

pfilenames = "c:/db_pickles/pickle - dfo-{measure} - {updated}.{ext}"

output_file_csv = pfilenames.format(measure=update['measure'], 
                                    updated=update['updated'], 
                                    ext="csv")

output_file_pickle = pfilenames.format(measure=update['measure'], 
                                    updated=update['updated'], 
                                    ext="pickle")

df_to_analyze.to_pickle(output_file_pickle)

dfo_to_analyze_missing_coded = df_to_analyze.replace(np.nan, '77777')
dfo_to_analyze_missing_coded.to_csv(output_file_csv)


print("\nSAVED: {}\n".format(output_file_csv))

df_to_analyze.T


SAVED: c:/db_pickles/pickle - dfo-subset_to_spss - 2014-10-15c.csv

Out[126]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SCAL_order_500ms_first 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000
SCAL_sex_femalezero 0.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 1.000000 ... 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000 0.000000 1.000000 0.000000
SCAL_orders_iso 1.000000 0.000000 1.000000 1.000000 1.000000 2.000000 0.000000 2.000000 0.000000 0.000000 ... 0.000000 1.000000 1.000000 0.000000 1.000000 2.000000 1.000000 2.000000 0.000000 2.000000
SCAL_orders_phase 2.000000 2.000000 2.000000 0.000000 2.000000 0.000000 2.000000 0.000000 2.000000 1.000000 ... 1.000000 0.000000 0.000000 1.000000 2.000000 0.000000 0.000000 0.000000 2.000000 0.000000
SCAL_orders_linear 0.000000 1.000000 0.000000 2.000000 0.000000 1.000000 1.000000 1.000000 1.000000 2.000000 ... 2.000000 2.000000 2.000000 2.000000 0.000000 1.000000 2.000000 1.000000 1.000000 1.000000
SCAL_calc_wasivocab_tscore 49.000000 78.000000 55.000000 50.000000 55.000000 57.000000 53.000000 57.000000 44.000000 47.000000 ... 39.000000 44.000000 63.000000 74.000000 52.000000 46.000000 57.000000 51.000000 43.000000 48.000000
SCAL_calc_wasimatrix_tscore 38.000000 53.000000 54.000000 53.000000 55.000000 49.000000 42.000000 46.000000 55.000000 48.000000 ... 46.000000 49.000000 62.000000 53.000000 71.000000 49.000000 52.000000 55.000000 57.000000 49.000000
SCAL_calc_wasi_tscore_total 87.000000 131.000000 109.000000 103.000000 110.000000 106.000000 95.000000 103.000000 99.000000 95.000000 ... 85.000000 93.000000 125.000000 127.000000 123.000000 95.000000 109.000000 106.000000 100.000000 97.000000
SCAL_calc_fsiq2 89.000000 127.000000 108.000000 102.000000 109.000000 105.000000 95.000000 102.000000 99.000000 95.000000 ... 87.000000 94.000000 122.000000 123.000000 120.000000 95.000000 108.000000 105.000000 100.000000 97.000000
SCAL_calc_bfi_extraversion 2.125000 4.000000 2.750000 3.000000 4.500000 1.750000 2.125000 3.250000 2.500000 2.625000 ... 3.875000 4.500000 3.000000 3.125000 4.875000 4.375000 4.375000 4.250000 3.000000 3.250000
SCAL_calc_bfi_agreeableness 3.666667 4.111111 2.888889 4.111111 4.444444 4.222222 3.888889 3.555556 5.000000 2.222222 ... 5.000000 4.444444 4.444444 2.888889 3.666667 4.555556 4.111111 3.666667 3.111111 3.333333
SCAL_calc_bfi_conscientiousness 3.777778 2.777778 3.555556 4.555556 4.000000 3.111111 3.888889 4.444444 3.444444 2.555556 ... 4.555556 4.000000 2.888889 2.888889 3.444444 3.555556 2.888889 3.444444 3.222222 3.555556
SCAL_calc_bfi_neuroticism 3.125000 3.250000 3.000000 3.000000 1.750000 2.625000 3.875000 3.250000 2.125000 3.500000 ... 2.250000 1.375000 4.375000 2.500000 2.125000 3.875000 2.625000 2.875000 3.250000 3.142857
SCAL_calc_bfi_openness 2.800000 3.700000 3.700000 3.600000 3.300000 2.500000 2.700000 4.700000 4.200000 3.200000 ... 4.300000 3.600000 3.600000 4.300000 4.400000 3.000000 3.900000 4.300000 4.900000 4.200000
SCAL_qmusic_dancelevel 2.000000 2.000000 1.000000 3.000000 4.000000 0.000000 0.000000 0.000000 1.000000 3.000000 ... 5.000000 0.000000 3.000000 2.000000 3.000000 4.000000 3.000000 3.000000 0.000000 0.000000
SCAL_qmusic_instrumentlevel 0.000000 3.000000 3.000000 0.000000 2.000000 0.000000 1.000000 4.000000 2.000000 0.000000 ... 0.000000 4.000000 4.000000 4.000000 3.000000 0.000000 3.000000 3.000000 0.000000 2.000000
SCAL_qmusic_drumlevel 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4.000000 0.000000 0.000000
SCAL_qmusic_behaviors_12_friendstaste 3.000000 3.000000 1.000000 3.000000 4.000000 3.000000 2.000000 2.000000 4.000000 4.000000 ... 7.000000 4.000000 2.000000 3.000000 5.000000 5.000000 4.000000 6.000000 5.000000 5.000000
SCAL_qmusic_behaviors_13_sharingint 4.000000 5.000000 1.000000 4.000000 2.000000 4.000000 3.000000 5.000000 1.000000 3.000000 ... 5.000000 4.000000 2.000000 4.000000 7.000000 6.000000 5.000000 7.000000 5.000000 5.000000
SCAL_qmusic_behaviors_14_getinterest 5.000000 5.000000 4.000000 4.000000 2.000000 4.000000 2.000000 3.000000 7.000000 4.000000 ... 5.000000 5.000000 3.000000 1.000000 7.000000 5.000000 5.000000 7.000000 5.000000 6.000000
qmusic_calc_anyhours 1.000000 1.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 0.000000 0.000000
qmusic_calc_maxskill 2.000000 3.000000 3.000000 3.000000 4.000000 0.000000 1.000000 4.000000 2.000000 3.000000 ... 5.000000 4.000000 4.000000 4.000000 3.000000 4.000000 3.000000 4.000000 0.000000 2.000000
qmusic_calc_sumskill 2.000000 5.000000 4.000000 3.000000 6.000000 0.000000 1.000000 4.000000 3.000000 3.000000 ... 5.000000 8.000000 7.000000 6.000000 6.000000 4.000000 6.000000 10.000000 0.000000 2.000000
qmusic_calc_socialimp 12.000000 13.000000 6.000000 11.000000 8.000000 11.000000 7.000000 10.000000 12.000000 11.000000 ... 17.000000 13.000000 7.000000 8.000000 19.000000 16.000000 14.000000 20.000000 15.000000 16.000000
SCAL_qmusic_behaviors_07_yourself_ln1p 2.708050 2.944439 2.602690 3.258097 2.397895 3.931826 1.791759 3.931826 3.931826 1.945910 ... 1.609438 1.945910 2.397895 2.397895 3.433987 1.791759 3.044522 4.290459 1.791759 2.772589
SCAL_qmusic_behaviors_08_otherprs_ln1p 2.397895 2.302585 1.791759 1.791759 1.791759 3.433987 2.708050 3.433987 2.397895 0.693147 ... 1.386294 1.098612 1.098612 2.708050 1.098612 3.433987 3.044522 4.394449 0.000000 1.791759
SCAL_qmusic_behaviors_09_danceprv_ln1p 1.791759 0.530628 0.000000 1.098612 3.433987 2.397895 0.000000 3.931826 2.772589 0.000000 ... 0.000000 0.000000 0.693147 1.098612 0.916291 1.098612 0.000000 0.000000 0.693147 0.693147
SCAL_qmusic_dancelevel_ln1p 1.098612 1.098612 0.693147 1.386294 1.609438 0.000000 0.000000 0.000000 0.693147 1.386294 ... 1.791759 0.000000 1.386294 1.098612 1.386294 1.609438 1.386294 1.386294 0.000000 0.000000
SCAL_qmusic_singinghours_nonzero 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
SCAL_qmusic_singingtimes_nonzero 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
s_iso8t2_DPsd_trunc_log NaN 1.131855 1.621979 1.717185 1.224957 1.854551 1.474399 0.850104 1.427988 1.486620 ... 1.764540 1.019723 1.804565 1.256179 0.822493 1.518399 1.074398 1.167698 1.312072 1.790040
s_lin5t_DPsd_trunc_log NaN 1.336055 1.601238 1.586875 1.532127 2.002822 1.746812 1.270195 1.511344 1.842359 ... 2.380195 1.240751 2.003874 1.490492 1.163007 1.884450 1.635103 1.436168 1.753264 1.995672
s_lin8t_DPsd_trunc_log 2.305383 1.334307 1.791392 1.519132 1.506308 1.742977 1.595103 1.167324 1.651714 1.665542 ... 1.983140 1.062247 1.871916 1.378390 1.198713 1.933333 1.592535 1.246329 1.665642 1.663364
s_phase5t_DPsd_trunc_log 2.818610 1.533899 1.808526 1.794290 1.771647 2.178424 1.728366 1.713754 1.871108 2.194410 ... 2.153918 1.445558 1.959776 2.369388 1.469174 2.199600 2.123358 1.575372 1.898144 2.078509
s_phase8t_DPsd_trunc_log 3.221469 1.440647 1.917085 1.947621 1.344109 2.057176 1.698249 1.711628 1.671339 1.918771 ... 1.944267 1.641779 1.935375 1.766689 1.418115 1.966662 1.819247 1.458257 1.705351 2.468320
s_iso5j_DPsd_trunc_log 1.468862 1.644933 1.660185 1.931067 1.883450 1.851579 1.738222 1.650584 1.848477 1.707418 ... 1.811877 1.631131 2.156306 1.822238 1.583392 1.685826 2.124690 1.572873 1.612913 1.718923
s_iso8j_DPsd_trunc_log NaN 1.692863 2.137184 1.772214 1.733544 1.819399 1.707575 1.755917 1.804228 1.908284 ... 2.083905 1.362888 1.821635 1.629429 1.708278 1.590430 1.918600 1.417264 1.426504 1.714364
s_lin5j_DPsd_trunc_log 2.015058 1.649390 1.871980 NaN NaN 1.917798 1.620410 2.070804 1.787552 1.761812 ... NaN 1.395519 2.419863 1.719042 1.585274 2.041828 1.756458 1.810486 1.675215 2.132917
s_lin8j_DPsd_trunc_log 2.116002 1.890228 2.313866 2.099799 2.200428 2.308440 2.141411 1.997351 2.083193 2.043251 ... 2.183058 1.850603 2.326427 1.971129 1.811144 2.128409 2.040155 1.914217 1.817584 2.400156
s_phase5j_DPsd_trunc_log 2.422405 1.774558 2.262908 2.144661 2.739569 2.087969 1.802783 2.051451 2.067474 2.104918 ... 2.155658 2.254326 2.238179 1.951401 1.814308 2.232164 1.880433 1.736957 2.057894 2.333196
s_phase8j_DPsd_trunc_log 2.540202 1.624128 2.170845 1.740630 2.359743 2.445744 1.774009 1.614812 1.849079 1.919424 ... 1.981102 1.731812 2.011558 1.692822 1.864767 2.026249 1.911932 1.699957 1.899737 2.077448
s_phase8j_psr_DPsd_trunc_log 1.822314 1.612924 2.027585 1.761192 2.566462 2.115852 1.885312 1.602012 1.797048 2.073824 ... 2.199807 2.058860 1.900451 1.992052 1.584186 2.080504 1.740867 1.964700 1.941108 2.165882
s_phase8t_psr_DPsd_trunc_log 2.527728 1.616072 2.169406 1.752274 1.517247 2.416043 1.976305 2.309860 1.974328 1.670599 ... 1.951454 2.163158 1.922902 2.187971 1.626977 1.977654 1.690675 1.627795 2.218610 2.246768
s_phase5j_psr_DPsd_trunc_log 2.346532 2.047200 2.553754 2.094738 2.409779 2.493829 1.940695 2.372425 2.388867 2.356191 ... 2.361161 2.327977 2.474297 2.297506 1.949023 2.458198 2.037533 1.767952 2.101445 2.328501
s_phase5t_psr_DPsd_trunc_log 2.739054 1.801437 2.241850 1.851662 1.960636 2.428850 1.970924 2.282671 2.420283 2.202548 ... 2.235615 1.836924 2.047796 2.035536 0.754183 2.477226 1.925059 2.033728 1.949939 2.524329
s_phase5t_nrm_DPsd_trunc_log NaN 1.237526 1.623261 1.498037 1.304594 1.940384 1.624750 1.325582 1.399705 NaN ... 2.160146 0.994008 1.954929 1.827445 1.297908 NaN 1.424663 1.292549 1.805887 NaN
s_phase8t_nrm_DPsd_trunc_log NaN 0.987879 2.026634 1.542243 0.976403 1.786897 1.473877 0.813877 1.606961 NaN ... 1.854807 1.021579 1.697091 1.313153 1.121737 NaN 1.486871 0.974948 1.550407 NaN
s_phase5j_nrm_DPsd_trunc_log 2.285546 1.542395 2.091082 1.861343 2.153080 1.998019 1.866872 2.025180 1.754322 2.217726 ... 1.988806 1.799722 2.083031 1.876012 1.685643 NaN 1.675792 1.690626 NaN NaN
s_phase8j_nrm_DPsd_trunc_log 1.912401 1.356415 1.966651 1.616563 2.202028 2.200341 1.741272 1.639814 1.825810 1.865401 ... 1.826274 1.504115 2.037023 1.587396 1.783867 2.023109 1.900283 1.585618 NaN 1.729026
IP4_local_trunc_mz58 -0.719911 0.030023 -0.098648 0.264946 1.346369 -0.977373 -0.289685 1.007855 0.140207 0.536259 ... -0.128227 1.431727 -2.601290 0.373697 0.921365 0.094343 -0.561011 1.347167 0.548749 0.283562
IP4_drift_trunc_mz58 -1.528469 0.714178 -0.292168 0.958729 1.190850 -0.730949 -0.562301 0.725530 0.141896 -1.104657 ... -1.602305 0.714119 -0.908375 0.692513 1.170212 -0.212934 -0.186605 1.182491 0.488464 0.175288
iso_j_DPsd_trunc_mz58 NaN 0.485154 -0.576302 -0.380216 -0.171384 -0.257252 0.247292 0.353306 -0.217636 -0.095610 ... -0.785827 1.031322 -1.205449 0.180269 0.585161 0.574214 -1.306551 1.077703 0.982872 0.279781
iso_t1_DPsd_trunc_mz58 -2.580137 0.811229 -1.118839 0.292937 1.285882 -1.566353 -0.058700 1.104828 0.493995 0.345159 ... -1.682016 1.226579 -0.552902 0.364202 1.350083 -0.562542 -0.138621 1.097650 -0.381829 -0.268570
iso_t2_DPsd_trunc_mz58 NaN 0.794860 0.092600 0.089634 0.978486 -1.264454 -0.100952 1.036733 0.542787 -0.137933 ... -0.640099 1.113219 -0.957161 0.308590 1.160745 0.007410 0.679895 0.868153 -0.097989 -0.381475
lin_j_DPsd_trunc_mz58 -0.386014 0.869291 -0.652105 NaN NaN -0.730164 0.312428 -0.224457 0.177851 0.325795 ... NaN 1.317060 -2.179467 0.573569 1.131269 -0.482863 0.343152 0.532899 0.974700 -1.550512
lin_t_DPsd_trunc_mz58 NaN 0.904052 -0.128324 0.348596 0.441437 -0.736396 -0.008309 1.159761 0.243038 -0.287189 ... -2.200433 1.291631 -0.989890 0.668271 1.230220 -0.883423 0.168568 0.892052 -0.133994 -0.581622
phase_j_nrm_DPsd_trunc_mz58 -1.329748 1.227999 -0.868490 0.306098 -1.602138 -1.189495 0.095847 -0.106883 0.173681 -1.024821 ... -0.331097 0.591870 -1.001700 0.317694 0.375925 NaN 0.175273 0.684718 NaN NaN
phase_j_psr_DPsd_trunc_mz58 0.067268 1.004538 -0.856846 0.718332 -1.760186 -0.846781 0.811338 0.298666 -0.004325 -0.387652 ... -0.660225 -0.288006 -0.399035 -0.090422 1.214085 -0.674306 0.855914 0.945735 0.426026 -0.504698
phase_t_nrm_DPsd_trunc_mz58 NaN 1.004355 -0.967242 0.084122 0.935139 -1.110738 -0.022757 1.026597 0.129298 NaN ... -1.793738 1.221023 -0.993391 -0.205448 0.821133 NaN 0.261642 0.950711 -0.454616 NaN
phase_t_psr_DPsd_trunc_mz58 -2.276363 0.941098 -0.387289 0.750056 0.810448 -1.206365 0.334312 -0.696282 -0.492269 0.283389 ... -0.077780 0.260199 0.282691 -0.058554 1.732216 -0.630644 0.711092 0.608235 0.021168 -1.134973

156 rows × 97 columns


In [22]:
df_to_analyze.count().to_csv('non-null counts 2014-10-15b.csv')

In [95]:
dfa = df_to_analyze

for p in concat_matches(df_to_analyze, '_log'): print p


I5P4_local_trunc_log
I8P4_local_trunc_log
I5P4_drift_trunc_log
I8P4_drift_trunc_log
s_iso5t1_DPsd_trunc_log
s_iso8t1_DPsd_trunc_log
s_iso5t2_DPsd_trunc_log
s_iso8t2_DPsd_trunc_log
s_lin5t_DPsd_trunc_log
s_lin8t_DPsd_trunc_log
s_phase5t_DPsd_trunc_log
s_phase8t_DPsd_trunc_log
s_iso5j_DPsd_trunc_log
s_iso8j_DPsd_trunc_log
s_lin5j_DPsd_trunc_log
s_lin8j_DPsd_trunc_log
s_phase5j_DPsd_trunc_log
s_phase8j_DPsd_trunc_log
s_phase8j_psr_DPsd_trunc_log
s_phase8t_psr_DPsd_trunc_log
s_phase5j_psr_DPsd_trunc_log
s_phase5t_psr_DPsd_trunc_log
s_phase5t_nrm_DPsd_trunc_log
s_phase8t_nrm_DPsd_trunc_log
s_phase5j_nrm_DPsd_trunc_log
s_phase8j_nrm_DPsd_trunc_log

In [103]:
paste_1 = ('''
s_iso5t2_DPsd_trunc_log
s_iso8t2_DPsd_trunc_log
s_iso5j_DPsd_trunc_log
s_iso8j_DPsd_trunc_log
s_phase8j_psr_DPsd_trunc_log
s_phase8t_psr_DPsd_trunc_log
s_phase5j_psr_DPsd_trunc_log
s_phase5t_psr_DPsd_trunc_log
''')

design_1 = clean_pasted_vars(paste_1)

scatter_all(dfa[design_1])


8 columns. Proceed?
('s_iso5t2_DPsd_trunc_log', 's_iso8t2_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_iso5j_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_iso8j_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_phase8j_psr_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_phase8t_psr_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_iso5t2_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_iso5j_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_iso8j_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_phase8j_psr_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_phase8t_psr_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_iso8t2_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_iso5j_DPsd_trunc_log', 's_iso8j_DPsd_trunc_log')
('s_iso5j_DPsd_trunc_log', 's_phase8j_psr_DPsd_trunc_log')
('s_iso5j_DPsd_trunc_log', 's_phase8t_psr_DPsd_trunc_log')
('s_iso5j_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_iso5j_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_iso8j_DPsd_trunc_log', 's_phase8j_psr_DPsd_trunc_log')
('s_iso8j_DPsd_trunc_log', 's_phase8t_psr_DPsd_trunc_log')
('s_iso8j_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_iso8j_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_phase8j_psr_DPsd_trunc_log', 's_phase8t_psr_DPsd_trunc_log')
('s_phase8j_psr_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_phase8j_psr_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_phase8t_psr_DPsd_trunc_log', 's_phase5j_psr_DPsd_trunc_log')
('s_phase8t_psr_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')
('s_phase5j_psr_DPsd_trunc_log', 's_phase5t_psr_DPsd_trunc_log')

In [98]:
design_2 = clean_pasted_vars('''
s_lin5t_DPsd_trunc_log
s_lin8t_DPsd_trunc_log
s_lin5j_DPsd_trunc_log
s_lin8j_DPsd_trunc_log
''')

scatter_all(dfa[design_2])


('s_lin5t_DPsd_trunc_log', 's_lin8t_DPsd_trunc_log')
('s_lin5t_DPsd_trunc_log', 's_lin5j_DPsd_trunc_log')
('s_lin5t_DPsd_trunc_log', 's_lin8j_DPsd_trunc_log')
('s_lin8t_DPsd_trunc_log', 's_lin5j_DPsd_trunc_log')
('s_lin8t_DPsd_trunc_log', 's_lin8j_DPsd_trunc_log')
('s_lin5j_DPsd_trunc_log', 's_lin8j_DPsd_trunc_log')

In [99]:
design_3 = clean_pasted_vars('''
I5P4_local_trunc_log
I8P4_local_trunc_log
I5P4_drift_trunc_log
I8P4_drift_trunc_log
''')

scatter_all(dfa[design_3])


('I5P4_local_trunc_log', 'I8P4_local_trunc_log')
('I5P4_local_trunc_log', 'I5P4_drift_trunc_log')
('I5P4_local_trunc_log', 'I8P4_drift_trunc_log')
('I8P4_local_trunc_log', 'I5P4_drift_trunc_log')
('I8P4_local_trunc_log', 'I8P4_drift_trunc_log')
('I5P4_drift_trunc_log', 'I8P4_drift_trunc_log')

In [101]:
match('drumlevel').sort(columns='SCAL_qmusic_drumlevel').tail(20)


Out[101]:
SCAL_qmusic_drumlevel
055 0
057 0
121 0
053 0
052 0
051 0
054 0
048 0
049 0
063 1
033 2
034 2
047 2
082 3
060 3
110 3
119 4
075 4
113 4
064 NaN

In [102]:
match('instrumentlevel').sort(columns='SCAL_qmusic_instrumentlevel').median()


Out[102]:
SCAL_qmusic_instrumentlevel    2
dtype: float64

In [207]:
def stack_rm_case(case_series):

    total_stacked_vars = 12
    caseid = case_series.name

    #caseid_repeated = [caseid] * total_stacked_vars

    #caseid_list = {}
    tasktype = {}
    targetioi = {}
    targetstim = {}

    tasktype['s_iso5t2_DPsd_trunc_log'] = 1
    tasktype['s_iso8t2_DPsd_trunc_log'] = 1
    tasktype['s_iso5j_DPsd_trunc_log'] = 1
    tasktype['s_iso8j_DPsd_trunc_log'] = 1
    tasktype['s_phase8j_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase8t_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5j_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5t_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5t_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase8t_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase5j_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase8j_nrm_DPsd_trunc_log'] = 3

    tasktype['s_iso5t2_DPsd_trunc_log'] = 1
    tasktype['s_iso8t2_DPsd_trunc_log'] = 1
    tasktype['s_iso5j_DPsd_trunc_log'] = 1
    tasktype['s_iso8j_DPsd_trunc_log'] = 1
    tasktype['s_phase8j_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase8t_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5j_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5t_psr_DPsd_trunc_log'] = 2
    tasktype['s_phase5t_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase8t_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase5j_nrm_DPsd_trunc_log'] = 3
    tasktype['s_phase8j_nrm_DPsd_trunc_log'] = 3

    targetioi['s_iso5t2_DPsd_trunc_log'] = 0
    targetioi['s_iso8t2_DPsd_trunc_log'] = 1
    targetioi['s_iso5j_DPsd_trunc_log'] = 0
    targetioi['s_iso8j_DPsd_trunc_log'] = 1
    targetioi['s_phase8j_psr_DPsd_trunc_log'] = 1
    targetioi['s_phase8t_psr_DPsd_trunc_log'] = 1
    targetioi['s_phase5j_psr_DPsd_trunc_log'] = 0
    targetioi['s_phase5t_psr_DPsd_trunc_log'] = 0
    targetioi['s_phase5t_nrm_DPsd_trunc_log'] = 0
    targetioi['s_phase8t_nrm_DPsd_trunc_log'] = 1
    targetioi['s_phase5j_nrm_DPsd_trunc_log'] = 0
    targetioi['s_phase8j_nrm_DPsd_trunc_log'] = 1

    targetstim['s_iso5t2_DPsd_trunc_log'] = 0
    targetstim['s_iso8t2_DPsd_trunc_log'] = 0
    targetstim['s_iso5j_DPsd_trunc_log'] = 1
    targetstim['s_iso8j_DPsd_trunc_log'] = 1
    targetstim['s_phase8j_psr_DPsd_trunc_log'] = 1
    targetstim['s_phase8t_psr_DPsd_trunc_log'] = 0
    targetstim['s_phase5j_psr_DPsd_trunc_log'] = 1
    targetstim['s_phase5t_psr_DPsd_trunc_log'] = 0
    targetstim['s_phase5t_nrm_DPsd_trunc_log'] = 0
    targetstim['s_phase8t_nrm_DPsd_trunc_log'] = 0
    targetstim['s_phase5j_nrm_DPsd_trunc_log'] = 1
    targetstim['s_phase8j_nrm_DPsd_trunc_log'] = 1

    caseid_repeated = {k: caseid for k in tasktype.keys()}

    stackedvars = pd.DataFrame({'caseid': caseid_repeated,
                                'casedata': acase,
                                'tasktype': tasktype,
                                'targetioi': targetioi,
                                'targetstim': targetstim,
                                },
                               #index = acase.T.index
                               )

    
    stackedvars.index.name='original_varname'

    case_out = stackedvars.reset_index('original_varname')
    
    return case_out


repmeas = concat_matches(df_to_analyze, 'psr.*log|nrm.*log|iso.t2.*log|iso.j.*log')

cases = [stack_rm_case(repmeas.loc[p]) for p in repmeas.index]

stacked = pd.concat(cases, axis=0)

stacked.index = range(len(stacked))
stacked.index.name = "st_row"

stacked = stacked.reset_index('st_row')
stacked = stacked.set_index('caseid')

In [208]:
df_to_analyze['SCAL_calc_fsiq2']


Out[208]:
015     89
016    127
017    108
018    102
019    109
020    105
021     95
022    102
024     99
025     95
026    100
027    105
028    116
029    108
030    115
...
107    108
108     96
109     97
110    122
111    118
112     87
113     94
114    122
115    123
116    120
117     95
118    108
119    105
120    100
121     97
Name: SCAL_calc_fsiq2, Length: 99, dtype: float64

In [219]:
df_to_analyze.loc['015', staticvar]


Out[219]:
89.0

In [214]:
staticvar = 'SCAL_calc_fsiq2'


ids = sorted(set(stacked.index))


for caseid in ids:
    print(caseid)
    stacked[staticvar] = np.nan
    
    stacked.loc[caseid, staticvar] = df_to_analyze.loc[caseid, staticvar]

#slc = stacked.loc[stacked.caseid=='015']
#slc.somevarname = 'the_value'



#stacked.to_csv('stacked_test.csv')
stacked


015
016
017
018
019
020
021
022
024
025
026
027
028
029
030
032
033
034
035
036
037
038
039
040
041
043
044
046
047
048
049
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
Out[214]:
st_row original_varname casedata targetioi targetstim tasktype SCAL_calc_fsiq2
caseid
015 0 s_iso5j_DPsd_trunc_log 1.644933 0 1 1 NaN
015 1 s_iso5t2_DPsd_trunc_log 1.259224 0 0 1 NaN
015 2 s_iso8j_DPsd_trunc_log 1.692863 1 1 1 NaN
015 3 s_iso8t2_DPsd_trunc_log 1.131855 1 0 1 NaN
015 4 s_phase5j_nrm_DPsd_trunc_log 1.542395 0 1 3 NaN
015 5 s_phase5j_psr_DPsd_trunc_log 2.047200 0 1 2 NaN
015 6 s_phase5t_nrm_DPsd_trunc_log 1.237526 0 0 3 NaN
015 7 s_phase5t_psr_DPsd_trunc_log 1.801437 0 0 2 NaN
015 8 s_phase8j_nrm_DPsd_trunc_log 1.356415 1 1 3 NaN
015 9 s_phase8j_psr_DPsd_trunc_log 1.612924 1 1 2 NaN
015 10 s_phase8t_nrm_DPsd_trunc_log 0.987879 1 0 3 NaN
015 11 s_phase8t_psr_DPsd_trunc_log 1.616072 1 0 2 NaN
016 12 s_iso5j_DPsd_trunc_log 1.644933 0 1 1 NaN
016 13 s_iso5t2_DPsd_trunc_log 1.259224 0 0 1 NaN
016 14 s_iso8j_DPsd_trunc_log 1.692863 1 1 1 NaN
016 15 s_iso8t2_DPsd_trunc_log 1.131855 1 0 1 NaN
016 16 s_phase5j_nrm_DPsd_trunc_log 1.542395 0 1 3 NaN
016 17 s_phase5j_psr_DPsd_trunc_log 2.047200 0 1 2 NaN
016 18 s_phase5t_nrm_DPsd_trunc_log 1.237526 0 0 3 NaN
016 19 s_phase5t_psr_DPsd_trunc_log 1.801437 0 0 2 NaN
016 20 s_phase8j_nrm_DPsd_trunc_log 1.356415 1 1 3 NaN
016 21 s_phase8j_psr_DPsd_trunc_log 1.612924 1 1 2 NaN
016 22 s_phase8t_nrm_DPsd_trunc_log 0.987879 1 0 3 NaN
016 23 s_phase8t_psr_DPsd_trunc_log 1.616072 1 0 2 NaN
017 24 s_iso5j_DPsd_trunc_log 1.644933 0 1 1 NaN
017 25 s_iso5t2_DPsd_trunc_log 1.259224 0 0 1 NaN
017 26 s_iso8j_DPsd_trunc_log 1.692863 1 1 1 NaN
017 27 s_iso8t2_DPsd_trunc_log 1.131855 1 0 1 NaN
017 28 s_phase5j_nrm_DPsd_trunc_log 1.542395 0 1 3 NaN
017 29 s_phase5j_psr_DPsd_trunc_log 2.047200 0 1 2 NaN
... ... ... ... ... ... ... ...
119 1158 s_phase5t_nrm_DPsd_trunc_log 1.237526 0 0 3 NaN
119 1159 s_phase5t_psr_DPsd_trunc_log 1.801437 0 0 2 NaN
119 1160 s_phase8j_nrm_DPsd_trunc_log 1.356415 1 1 3 NaN
119 1161 s_phase8j_psr_DPsd_trunc_log 1.612924 1 1 2 NaN
119 1162 s_phase8t_nrm_DPsd_trunc_log 0.987879 1 0 3 NaN
119 1163 s_phase8t_psr_DPsd_trunc_log 1.616072 1 0 2 NaN
120 1164 s_iso5j_DPsd_trunc_log 1.644933 0 1 1 NaN
120 1165 s_iso5t2_DPsd_trunc_log 1.259224 0 0 1 NaN
120 1166 s_iso8j_DPsd_trunc_log 1.692863 1 1 1 NaN
120 1167 s_iso8t2_DPsd_trunc_log 1.131855 1 0 1 NaN
120 1168 s_phase5j_nrm_DPsd_trunc_log 1.542395 0 1 3 NaN
120 1169 s_phase5j_psr_DPsd_trunc_log 2.047200 0 1 2 NaN
120 1170 s_phase5t_nrm_DPsd_trunc_log 1.237526 0 0 3 NaN
120 1171 s_phase5t_psr_DPsd_trunc_log 1.801437 0 0 2 NaN
120 1172 s_phase8j_nrm_DPsd_trunc_log 1.356415 1 1 3 NaN
120 1173 s_phase8j_psr_DPsd_trunc_log 1.612924 1 1 2 NaN
120 1174 s_phase8t_nrm_DPsd_trunc_log 0.987879 1 0 3 NaN
120 1175 s_phase8t_psr_DPsd_trunc_log 1.616072 1 0 2 NaN
121 1176 s_iso5j_DPsd_trunc_log 1.644933 0 1 1 97
121 1177 s_iso5t2_DPsd_trunc_log 1.259224 0 0 1 97
121 1178 s_iso8j_DPsd_trunc_log 1.692863 1 1 1 97
121 1179 s_iso8t2_DPsd_trunc_log 1.131855 1 0 1 97
121 1180 s_phase5j_nrm_DPsd_trunc_log 1.542395 0 1 3 97
121 1181 s_phase5j_psr_DPsd_trunc_log 2.047200 0 1 2 97
121 1182 s_phase5t_nrm_DPsd_trunc_log 1.237526 0 0 3 97
121 1183 s_phase5t_psr_DPsd_trunc_log 1.801437 0 0 2 97
121 1184 s_phase8j_nrm_DPsd_trunc_log 1.356415 1 1 3 97
121 1185 s_phase8j_psr_DPsd_trunc_log 1.612924 1 1 2 97
121 1186 s_phase8t_nrm_DPsd_trunc_log 0.987879 1 0 3 97
121 1187 s_phase8t_psr_DPsd_trunc_log 1.616072 1 0 2 97

1188 rows × 7 columns


In [171]:
df_to_analyze.loc[caseid, staticvar]


Out[171]:
89.0

In [313]:
print("NULL VALUES (INCLUDING REMOVED FOR INCOMPLETE TAP SETS):\n\n")
    
for c in df_to_analyze:
    print(c)
    s = df_to_analyze[c]
    print(list(s[s.isnull()].index))
    print('')


NULL VALUES (INCLUDING REMOVED FOR INCOMPLETE TAP SETS):


SCAL_order_500ms_first
[]

SCAL_sex_femalezero
[]

SCAL_calc_wasivocab_tscore
[]

SCAL_calc_wasimatrix_tscore
['053']

SCAL_calc_wasi_tscore_total
['053']

SCAL_calc_fsiq2
['053']

SCAL_calc_bfi_extraversion
[]

SCAL_calc_bfi_agreeableness
[]

SCAL_calc_bfi_conscientiousness
[]

SCAL_calc_bfi_neuroticism
[]

SCAL_calc_bfi_openness
[]

SCAL_qmusic_dancelevel
[]

SCAL_qmusic_instrumentlevel
[]

SCAL_qmusic_drumlevel
['064']

SCAL_qmusic_behaviors_12_friendstaste
[]

SCAL_qmusic_behaviors_13_sharingint
[]

SCAL_qmusic_behaviors_14_getinterest
[]

qmusic_calc_anyhours
[]

qmusic_calc_maxskill
['064']

qmusic_calc_sumskill
['064']

qmusic_calc_socialimp
[]

SCAL_qmusic_behaviors_07_yourself_ln1p
['093']

SCAL_qmusic_behaviors_08_otherprs_ln1p
[]

SCAL_qmusic_behaviors_09_danceprv_ln1p
[]

SCAL_qmusic_dancelevel_ln1p
[]

SCAL_qmusic_singinghours_nonzero
[]

SCAL_qmusic_singingtimes_nonzero
[]

SCAL_qmusic_dancehours_nonzero
[]

SCAL_qmusic_instrumenthours_nonzero
[]

SCAL_qmusic_drumhours_nonzero
[]

SCAL_qmusic_behaviors_09_danceprv_nonzero
[]

SCAL_qmusic_behaviors_10_dancepub_nonzero
[]

SCAL_qmusic_gamehoursall_nonzero
[]

SCAL_qmusic_gamehoursdrumsticks_nonzero
[]

I5P4_local_trunc
['049']

I8P4_local_trunc
['048']

I8P4_drift_trunc
['048']

I5P4_drift_trunc
['049']

I8L2_local_trunc
['048']

I5L2_local_trunc
['049']

I8L2_drift_trunc
['018', '048', '057', '059', '064', '066', '116']

I5L2_drift_trunc
['016', '022', '033', '036', '044', '049', '052', '053', '056', '061', '077', '078', '084', '085', '089', '092', '096', '097', '101', '105', '107', '109', '110', '111', '115', '116']

I8P4_ints_count
['048']

I5P4_ints_count
['049']

I8L2_ints_count
['048']

I5L2_ints_count
['049']

I8P4_driftperc_trunc
['048']

I8P4_localperc_trunc
['048']

I5P4_driftperc_trunc
['049']

I5P4_localperc_trunc
['049']

s_iso5t1_DPm
['055', '073']

s_iso5t1_DPsd_trunc
['055', '073']

s_iso5t1_DPct
['055', '073']

s_iso8t1_DPm
['073']

s_iso8t1_DPsd_trunc
['073']

s_iso8t1_DPct
['073']

s_iso5t2_DPm
['049']

s_iso5t2_DPsd_trunc
['049']

s_iso5t2_DPct
['049']

s_iso8t2_DPm
['015', '049', '055', '104']

s_iso8t2_DPsd_trunc
['015', '049', '055', '104']

s_iso8t2_DPct
['015', '049', '055', '104']

s_lin5t_DPm
['015', '049', '055', '068', '073', '089']

s_lin5t_DPsd_trunc
['015', '049', '055', '068', '073', '089']

s_lin5t_DPct
['015', '049', '055', '068', '073', '089']

s_lin8t_DPm
['029', '055', '073', '086']

s_lin8t_DPsd_trunc
['029', '055', '073', '086']

s_lin8t_DPct
['029', '055', '073', '086']

s_phase5t_DPm
[]

s_phase5t_DPsd_trunc
[]

s_phase5t_DPct
[]

s_phase8t_DPm
[]

s_phase8t_DPsd_trunc
[]

s_phase8t_DPct
[]

s_iso5j_DPm
['104']

s_iso5j_DPsd_trunc
['104']

s_iso5j_DPct
['104']

s_iso8j_DPm
['015', '049', '055']

s_iso8j_DPsd_trunc
['015', '049', '055']

s_iso8j_DPct
['015', '049', '055']

s_lin5j_DPm
['018', '019', '035', '068', '073', '077', '089', '104', '112']

s_lin5j_DPsd_trunc
['018', '019', '035', '068', '073', '077', '089', '104', '112']

s_lin5j_DPct
['018', '019', '035', '068', '073', '077', '089', '104', '112']

s_lin8j_DPm
['068', '073', '089']

s_lin8j_DPsd_trunc
['068', '073', '089']

s_lin8j_DPct
['068', '073', '089']

s_phase5j_DPm
[]

s_phase5j_DPsd_trunc
[]

s_phase5j_DPct
[]

s_phase8j_DPm
[]

s_phase8j_DPsd_trunc
[]

s_phase8j_DPct
[]

s_phase8j_psr_DPm
[]

s_phase8j_psr_DPsd_trunc
[]

s_phase8j_psr_DPct
[]

s_phase8t_psr_DPm
[]

s_phase8t_psr_DPsd_trunc
[]

s_phase8t_psr_DPct
[]

s_phase5j_psr_DPm
[]

s_phase5j_psr_DPsd_trunc
[]

s_phase5j_psr_DPct
[]

s_phase5t_psr_DPm
[]

s_phase5t_psr_DPsd_trunc
[]

s_phase5t_psr_DPct
[]

s_phase5t_nrm_DPm
['015', '025', '030', '033', '044', '055', '066', '073', '080', '086', '104', '107', '109', '117', '121']

s_phase5t_nrm_DPsd_trunc
['015', '025', '030', '033', '044', '055', '066', '073', '080', '086', '104', '107', '109', '117', '121']

s_phase5t_nrm_DPct
['015', '025', '030', '033', '044', '066', '073', '080', '104', '107', '109', '117', '121']

s_phase8t_nrm_DPm
['015', '025', '049', '055', '068', '073', '086', '089', '098', '104', '109', '117', '121']

s_phase8t_nrm_DPsd_trunc
['015', '025', '049', '055', '068', '073', '086', '089', '098', '104', '109', '117', '121']

s_phase8t_nrm_DPct
['015', '025', '049', '055', '068', '073', '086', '098', '104', '109', '117', '121']

s_phase5j_nrm_DPm
['026', '027', '041', '049', '060', '073', '086', '104', '107', '109', '117', '120', '121']

s_phase5j_nrm_DPsd_trunc
['026', '027', '041', '049', '060', '073', '086', '104', '107', '109', '117', '120', '121']

s_phase5j_nrm_DPct
['026', '027', '041', '049', '060', '073', '104', '107', '109', '117', '120', '121']

s_phase8j_nrm_DPm
['026', '038', '049', '054', '055', '073', '086', '089', '105', '107', '120']

s_phase8j_nrm_DPsd_trunc
['026', '038', '049', '054', '055', '073', '086', '089', '105', '107', '120']

s_phase8j_nrm_DPct
['026', '038', '049', '054', '086', '105', '107', '120']

iso_j_DPsd_trunc_mz58
['015', '049', '055', '104']

iso_t1_DPsd_trunc_mz58
['055', '073']

iso_t2_DPsd_trunc_mz58
['015', '049', '055', '104']

lin_j_DPsd_trunc_mz58
['018', '019', '035', '068', '073', '077', '089', '104', '112']

lin_t_DPsd_trunc_mz58
['015', '029', '049', '055', '068', '073', '086', '089']

phase_j_nrm_DPsd_trunc_mz58
['026', '027', '038', '041', '049', '054', '055', '060', '073', '086', '089', '104', '105', '107', '109', '117', '120', '121']

phase_j_psr_DPsd_trunc_mz58
[]

phase_t_nrm_DPsd_trunc_mz58
['015', '025', '030', '033', '044', '049', '055', '066', '068', '073', '080', '086', '089', '098', '104', '107', '109', '117', '121']

phase_t_psr_DPsd_trunc_mz58
[]

IP4_local_trunc_mz58
['048', '049']

IP4_drift_trunc_mz58
['048', '049']

After exporting CSV: looking at distributions here...

Descriptives (into manuscript)


In [209]:
dfa = df_to_analyze

get = lambda r: (list(concat_matches(dfo, r).columns), concat_matches(dfo, r))
geta = lambda r: (list(concat_matches(df_to_analyze, r).columns), concat_matches(df_to_analyze, r))
firstcol = lambda df: df.T.iloc[0]

firstcol(match('participant_age')).describe()


Out[209]:
count    99.000000
mean     20.939394
std       5.013895
min      18.000000
25%      19.000000
50%      20.000000
75%      21.000000
max      52.000000
dtype: float64

In [157]:
sex = firstcol(match('sex_femalezero'))
is_female = (sex==0)
is_male = (sex==1)

assert is_female[is_female==True].count() == 60
assert is_female[is_female==False].count() == 39

assert is_male[is_male==True].count() == 39
assert is_male[is_male==False].count() == 60

In [159]:
var1 = firstcol(match('participant_age'))

print ("  females")
print firstcol(match('participant_age'))[is_female].describe()
print 
print ("  males")
print firstcol(match('participant_age'))[is_male].describe()


  females
count    60.00000
mean     21.30000
std       6.01777
min      18.00000
25%      19.00000
50%      19.50000
75%      21.25000
max      52.00000
dtype: float64

  males
count    39.000000
mean     20.384615
std       2.843417
min      18.000000
25%      19.000000
50%      20.000000
75%      21.000000
max      32.000000
dtype: float64

In [171]:
names, df = get('white')

print 'female'
print df[is_female].sum()
print df[is_female].count()
print
print 'male'
print df[is_male].sum()
print df[is_male].count()


female
SCAL_qbasic_ethnicity_white    32
dtype: int64
SCAL_qbasic_ethnicity_white    60
dtype: int64

male
SCAL_qbasic_ethnicity_white    16
dtype: int64
SCAL_qbasic_ethnicity_white    39
dtype: int64

In [133]:
match('participant_age').columns
#dfo['SCAL_participant_age'].name


Out[133]:
Index([u'SCAL_participant_age'], dtype='object')

In [217]:
names, df = get('I?P4_ints_count')
df.describe()


Out[217]:
I5P4_ints_count I8P4_ints_count
count 98.000000 98.000000
mean 114.469388 114.428571
std 4.279426 9.169650
min 103.000000 78.000000
25% 112.000000 112.000000
50% 114.500000 115.000000
75% 117.000000 119.000000
max 127.000000 134.000000

In [228]:
names, df = geta('I?P4_drift_trunc$')
df.describe()


Out[228]:
I8P4_drift_trunc I5P4_drift_trunc
count 98.000000 98.000000
mean 3.140968 2.634933
std 1.185538 0.839702
min 1.477740 1.262769
25% 2.272543 2.123736
50% 2.785199 2.439624
75% 3.754941 3.041484
max 6.877687 5.521678

In [261]:
names, df = geta('s_.*DPsd_trunc$')
dtable = df.describe().T[:14]
reformat = np.round(dtable[['mean', 'std', 'count']], 4)
reformat


Out[261]:
mean std count
s_iso5t1_DPsd_trunc 4.3521 1.2843 97
s_iso8t1_DPsd_trunc 4.5325 1.7889 98
s_iso5t2_DPsd_trunc 4.7942 1.6437 98
s_iso8t2_DPsd_trunc 4.3974 1.6388 95
s_lin5t_DPsd_trunc 5.4829 1.7679 93
s_lin8t_DPsd_trunc 5.1139 1.5689 95
s_phase5t_DPsd_trunc 6.9577 2.5776 99
s_phase8t_DPsd_trunc 7.3281 4.7130 99
s_iso5j_DPsd_trunc 5.7983 1.2116 98
s_iso8j_DPsd_trunc 6.0582 1.4768 96
s_lin5j_DPsd_trunc 6.4575 1.5829 90
s_lin8j_DPsd_trunc 8.0590 1.5669 96
s_phase5j_DPsd_trunc 8.2631 3.0712 99
s_phase8j_DPsd_trunc 8.2550 4.3892 99

In [264]:
names, df = geta('nrm_DPsd_trunc$|psr_DPsd_trunc$')
dtable = df.describe().T #[14:-6]
reformat = dtable[['mean', 'std', 'count']]
reformat


Out[264]:
mean std count
s_phase8j_psr_DPsd_trunc 7.601853 2.069916 99
s_phase8t_psr_DPsd_trunc 8.044562 2.857241 99
s_phase5j_psr_DPsd_trunc 9.303088 2.055752 99
s_phase5t_psr_DPsd_trunc 8.154759 2.470972 99
s_phase5t_nrm_DPsd_trunc 4.826685 1.536312 84
s_phase8t_nrm_DPsd_trunc 4.553451 1.697381 86
s_phase5j_nrm_DPsd_trunc 6.237400 1.520756 86
s_phase8j_nrm_DPsd_trunc 6.260877 1.675251 88

In [269]:
names, df = get('DPsd')
dtable = df.describe().T[:14]
reformat = np.round(dtable[['mean', 'std', 'count']], 4)
reformat


Out[269]:
mean std count
SMSR_iso5t1_DPsd 4.3850 1.4098 97
SMSR_iso8t1_DPsd 4.5325 1.7889 98
SMSR_iso5t2_DPsd 4.8435 1.8394 98
SMSR_iso8t2_DPsd 4.4217 1.7305 95
SMSR_lin5t_DPsd 5.4938 1.8040 93
SMSR_lin8t_DPsd 5.1355 1.6423 95
SMSR_phase5t_DPsd 7.0877 3.2257 99
SMSR_phase8t_DPsd 7.5997 5.8158 99
SMSR_iso5j_DPsd 5.8287 1.3215 98
SMSR_iso8j_DPsd 6.0582 1.4768 96
SMSR_lin5j_DPsd 6.4608 1.5929 90
SMSR_lin8j_DPsd 8.0682 1.5976 96
SMSR_phase5j_DPsd 8.3989 3.6827 99
SMSR_phase8j_DPsd 8.5615 5.7565 99

In [203]:
names, df = get('I5P4_ints_count')
df.std()


Out[203]:
I5P4_ints_count    4.279426
dtype: float64

var1


In [76]:
dfa = df_to_analyze
matcha = lambda x: concat_matches(dfa, x)
isips = matcha('P4_drift_trunc|P4_local_trunc')
isips


Out[76]:
I5P4_local_trunc I8P4_local_trunc I8P4_drift_trunc I5P4_drift_trunc I5P4_local_trunc_log I8P4_local_trunc_log I5P4_drift_trunc_log I8P4_drift_trunc_log
015 2.918599 3.871535 5.361354 3.622814 1.071104 1.353651 1.287251 1.679217
016 2.692996 2.975526 2.148091 2.134364 0.990654 1.090421 0.758169 0.764580
017 2.764646 3.093386 3.853557 2.614372 1.016912 1.129266 0.961024 1.348997
018 2.080451 3.284952 2.249890 1.649681 0.732585 1.189352 0.500582 0.810881
019 1.397983 2.381819 2.243927 1.262769 0.335030 0.867865 0.233307 0.808227
020 3.357435 3.785594 4.145644 3.145559 1.211177 1.331203 1.145992 1.422058
021 3.454273 2.633204 4.128266 2.873748 1.239612 0.968201 1.055617 1.417857
022 2.634599 1.550475 2.268349 2.029501 0.968731 0.438561 0.707790 0.819052
024 2.834259 2.653945 3.064198 2.445649 1.041781 0.976047 0.894311 1.119786
025 2.568266 2.340668 4.878173 3.253087 0.943231 0.850436 1.179604 1.584771
026 3.350752 1.716964 1.526251 2.556399 1.209185 0.540557 0.938600 0.422814
027 2.534100 1.905319 2.021396 1.719803 0.929838 0.644649 0.542210 0.703788
028 2.693264 2.454855 2.392972 2.529593 0.990754 0.898068 0.928058 0.872536
029 2.740823 4.162152 3.397715 3.012302 1.008258 1.426032 1.102704 1.223103
030 1.836484 2.149577 2.538334 1.459469 0.607853 0.765271 0.378073 0.931508
032 1.604973 1.511323 1.477740 1.508371 0.473107 0.412985 0.411030 0.390514
033 2.628603 2.478391 2.136364 2.062282 0.966453 0.907609 0.723813 0.759105
034 2.239750 2.117451 1.814533 1.989566 0.806364 0.750213 0.687917 0.595828
035 3.150311 3.228548 3.064296 2.369321 1.147501 1.172033 0.862604 1.119818
036 4.481994 5.043328 5.122094 3.699159 1.500068 1.618066 1.308105 1.633563
037 3.387714 2.662026 4.152781 3.619540 1.220155 0.979088 1.286347 1.423778
038 2.249455 2.829793 2.656698 1.680426 0.810688 1.040204 0.519047 0.977084
039 2.780111 2.935845 2.770641 3.031682 1.022491 1.076995 1.109118 1.019079
040 1.510101 2.461254 3.092411 1.467066 0.412176 0.900671 0.383264 1.128951
041 2.145076 2.362158 2.045128 1.845840 0.763175 0.859575 0.612935 0.715461
043 2.488092 2.812628 5.724121 3.740139 0.911516 1.034119 1.319123 1.744689
044 3.350447 3.013915 2.880284 2.462124 1.209094 1.103240 0.901024 1.057889
046 3.210654 2.719880 3.335428 2.691112 1.166475 1.000588 0.989955 1.204601
047 2.780972 1.741558 1.893753 2.608408 1.022800 0.554780 0.958740 0.638561
048 2.057786 NaN NaN 2.157261 0.721630 NaN 0.768839 NaN
... ... ... ... ... ... ... ... ...
091 2.371655 2.403515 3.087463 2.414281 0.863588 0.876932 0.881401 1.127350
092 3.221222 2.761092 3.171285 2.436657 1.169761 1.015626 0.890627 1.154137
093 3.187021 2.699241 2.705529 2.975701 1.159087 0.992971 1.090480 0.995297
094 3.895166 2.552915 2.467728 3.166824 1.359736 0.937236 1.152729 0.903298
095 2.855076 2.236916 2.692721 2.346938 1.049098 0.805098 0.853112 0.990552
096 2.758227 2.636349 2.631248 2.430900 1.014588 0.969395 0.888261 0.967458
097 3.288903 2.700432 2.362413 2.863347 1.190554 0.993412 1.051991 0.859684
098 2.470041 2.402485 1.902927 1.794084 0.904235 0.876504 0.584495 0.643393
099 2.549172 3.921938 4.614650 2.129828 0.935768 1.366586 0.756041 1.529236
100 2.891669 3.025877 2.892949 2.279206 1.061834 1.107201 0.823827 1.062276
101 2.653102 2.296601 4.485799 2.192433 0.975730 0.831430 0.785012 1.500917
102 3.197323 1.817661 2.213733 2.416846 1.162314 0.597551 0.882463 0.794680
103 3.243799 2.550272 2.720966 2.747351 1.176745 0.936200 1.010637 1.000987
104 3.037799 2.328359 2.589216 2.791918 1.111133 0.845164 1.026729 0.951355
105 2.873310 3.591199 4.576603 2.544936 1.055465 1.278486 0.934105 1.520957
107 2.465461 2.891443 2.427825 1.809284 0.902379 1.061756 0.592931 0.886996
108 3.134870 2.597465 2.800888 3.308830 1.142588 0.954536 1.196595 1.029936
109 3.009218 3.159224 3.039583 2.322104 1.101680 1.150326 0.842474 1.111720
110 1.940701 2.280976 1.713848 1.549869 0.663049 0.824603 0.438170 0.538741
111 3.034355 2.380234 3.327398 2.317140 1.109999 0.867199 0.840334 1.202191
112 2.629085 3.286044 4.578238 4.305536 0.966636 1.189684 1.459902 1.521314
113 1.898820 1.706451 3.133905 1.431661 0.641233 0.534416 0.358835 1.142280
114 4.873864 4.606419 3.512176 3.896161 1.583887 1.527451 1.359992 1.256236
115 2.944964 2.177921 1.844496 2.387312 1.080096 0.778371 0.870168 0.612206
116 2.272517 2.076461 1.585251 1.767129 0.820888 0.730665 0.569356 0.460743
117 2.884701 2.668836 3.120648 3.003352 1.059421 0.981642 1.099729 1.138041
118 3.168178 3.357831 2.771240 3.208083 1.153157 1.211295 1.165674 1.019295
119 1.649012 2.107230 1.874337 1.540343 0.500176 0.745374 0.432005 0.628255
120 2.400801 2.504026 2.308642 2.400271 0.875803 0.917900 0.875582 0.836660
121 2.143469 3.187984 3.452782 2.112349 0.762425 1.159389 0.747801 1.239180

99 rows × 8 columns


In [82]:
dfa = df_to_analyze

matcha = lambda x: concat_matches(dfa, x)
#isips = matcha('P4_drift_trunc|P4_local_trunc')
smscols = matcha('^s_.*DPsd_trunc$')

#scatter_all(isips, print_max=3)
#scatter_all(np.log(isips), print_max=3)

smscols.T


Out[82]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
s_iso5t1_DPsd_trunc 8.059057 3.423481 3.607109 3.291210 2.583675 7.004012 4.608983 3.167766 3.170995 3.186261 ... 6.123362 2.799212 4.586392 4.075651 2.487950 5.184207 5.405130 2.827062 5.538719 4.245075
s_iso8t1_DPsd_trunc 7.944039 2.964738 9.560081 5.005393 2.431597 6.505625 4.433459 2.268350 4.452189 4.964179 ... 8.144077 2.344456 6.235354 3.659721 2.334648 5.438937 3.613148 2.767637 4.298762 5.691151
s_iso5t2_DPsd_trunc 8.438450 3.522687 3.871627 3.373599 2.612512 7.021192 5.208270 3.488723 3.281671 5.276439 ... 5.511892 2.801852 6.319350 4.716004 3.143240 4.653159 4.076174 3.167036 5.855743 4.506521
s_iso8t2_DPsd_trunc 9.492087 3.101403 5.063099 5.568829 3.404020 6.388830 4.368410 2.339890 4.170302 4.422124 ... 5.838884 2.772427 6.077328 3.511975 2.276168 4.564913 2.928230 3.214585 3.713862 5.989694
s_lin5t_DPsd_trunc 12.332615 3.804005 4.959168 4.888448 4.628010 7.409937 5.736285 3.561546 4.532819 6.311407 ... 11.863541 3.458209 7.417736 4.439277 3.199540 6.582733 5.129986 4.204554 5.773415 7.357143
s_lin8t_DPsd_trunc 10.526399 3.797363 5.997794 4.568257 4.510050 5.714329 4.928837 3.213383 5.215915 5.288537 ... 7.265519 2.892864 6.500740 3.968508 3.315846 6.912513 4.916196 3.477552 5.289070 5.277031
s_phase5t_DPsd_trunc 13.263134 4.636219 6.101449 6.015203 5.880533 8.832377 5.631446 5.549757 6.495490 8.974706 ... 8.618557 4.244219 7.097735 10.690847 4.345646 9.021404 8.359160 4.832540 6.673500 7.992546
s_phase8t_DPsd_trunc 20.380103 4.223427 6.801106 7.011985 3.834770 7.823846 5.464373 5.537968 5.319286 6.812584 ... 6.988509 5.164350 6.926644 5.851449 4.129328 7.146782 6.167211 4.298461 5.503316 11.802603
s_iso5j_DPsd_trunc 4.344289 5.180662 5.260285 6.896868 6.576153 6.369871 5.687223 5.210024 6.350138 5.514704 ... 6.121927 5.109652 8.639169 6.185684 4.871451 5.396906 8.370299 4.820479 5.017404 5.578518
s_iso8j_DPsd_trunc 10.779028 5.435017 8.475535 5.883866 5.660678 6.168150 5.515570 5.788754 6.075278 6.741509 ... 8.035791 3.907462 6.181960 5.100964 5.519451 4.905857 6.811418 4.125815 4.164116 5.553144
s_lin5j_DPsd_trunc 7.501162 5.203805 6.501155 NaN 7.291124 6.805953 5.055164 7.931197 5.974806 5.822978 ... 5.567357 4.037070 11.463016 5.579179 4.880630 7.704681 5.791886 6.113417 5.339945 8.439449
s_lin8j_DPsd_trunc 8.297900 6.620878 10.113443 8.164527 9.028881 10.058718 8.511438 7.369508 8.030070 7.715649 ... 8.873398 6.363658 10.241289 7.178777 6.117443 8.401488 7.691800 6.781628 6.156963 11.024891
s_phase5j_DPsd_trunc 11.272936 5.897675 9.611000 8.539146 15.480304 8.068511 6.066509 7.779181 7.904829 8.206434 ... 8.633570 9.528869 9.376242 7.038543 6.136827 9.320015 6.556342 5.680030 7.829466 10.310838
s_phase8j_DPsd_trunc 12.682229 5.073990 8.765685 5.700936 10.588232 11.539131 5.894436 5.026944 6.353962 6.817031 ... 7.250727 5.650887 7.474951 5.434796 6.454431 7.585576 6.766145 5.473712 6.684138 7.984069
s_phase8j_psk_DPsd_trunc 5.265406 5.017459 7.267209 5.819368 12.505387 8.127084 6.588412 4.963010 6.031818 7.660522 ... 8.842019 7.837034 6.495179 7.330560 4.875323 8.052651 5.702284 7.037632 6.966469 8.356615
s_phase8j_psr_DPsd_trunc 5.265406 5.017459 7.267209 5.819368 12.505387 8.127084 6.588412 4.963010 6.031818 7.660522 ... 8.842019 7.837034 6.495179 7.330560 4.875323 8.052651 5.702284 7.037632 6.966469 8.356615
s_phase8tp_psk_DPsd_trunc 10.965734 4.106756 8.509142 5.401160 4.559657 10.939696 6.969336 9.824751 7.201778 8.618015 ... 6.680462 8.436280 6.840779 8.770963 4.564519 6.650191 5.423142 4.591979 9.194539 8.725255
s_phase8t_psr_DPsd_trunc 10.965734 4.106756 8.509142 5.401160 4.559657 10.939696 6.969336 9.824751 7.201778 8.618015 ... 6.680462 8.436280 6.840779 8.770963 4.564519 6.650191 5.423142 4.591979 9.194539 8.725255
s_phase5j_psk_DPsd_trunc 9.671795 7.746184 13.233118 8.123313 11.121553 11.433945 6.963592 10.593309 10.867236 10.456456 ... 10.470506 10.130621 10.167881 9.782344 7.021825 11.598006 7.671657 5.858844 8.079845 10.262552
s_phase5j_psr_DPsd_trunc 9.671795 7.746184 13.233118 8.123313 11.121553 11.433945 6.963592 10.593309 10.867236 10.456456 ... 10.470506 10.130621 10.167881 9.782344 7.021825 11.598006 7.671657 5.858844 8.079845 10.262552
s_phase5t_psk_DPsd_trunc 15.162014 6.058348 9.410722 6.370397 7.103844 11.904894 7.040196 9.685003 11.232640 9.391291 ... 9.352234 6.277202 7.563332 7.484122 2.125875 11.652432 6.887987 7.658930 6.190892 12.641256
s_phase5t_psr_DPsd_trunc 15.162014 6.058348 9.410722 6.370397 7.103844 11.904894 7.040196 9.685003 11.232640 9.391291 ... 9.352234 6.277202 7.563332 7.484122 2.125875 11.652432 6.887987 7.658930 6.190892 12.641256
s_phase5t_nrm_DPsd_trunc 9.927312 3.838674 5.033151 4.297641 5.041071 6.515859 5.123415 3.202688 4.387560 6.458833 ... 8.683665 2.702944 6.981320 9.376295 3.758252 5.062213 6.683912 3.535127 5.806555 5.977768
s_phase8t_nrm_DPsd_trunc 11.603960 3.004894 6.854995 4.567225 2.672316 6.204709 4.395920 2.676518 4.489272 5.832460 ... 6.828493 2.992058 6.634580 3.587443 2.923484 4.962582 4.997630 3.253722 4.417981 8.101868
s_phase5j_nrm_DPsd_trunc 8.743251 5.071083 7.014337 7.038558 8.514883 6.505715 5.969171 6.423529 7.290552 7.161750 ... 7.601825 5.574598 7.316711 6.213868 5.649286 5.908589 4.781702 5.062602 6.617469 8.870715
s_phase8j_nrm_DPsd_trunc 8.764165 4.396308 8.542477 5.516430 8.587748 8.353316 5.484358 4.902742 5.857296 6.170993 ... 6.737524 5.076955 7.549187 5.142237 6.585330 6.599854 6.341203 4.807167 6.751792 6.183649
s_lint_610690_DPsd_trunc 13.248921 3.647491 6.254805 4.769801 5.044258 7.952984 6.309685 3.805393 4.389249 5.555110 ... 12.938677 3.283291 9.406283 4.755764 3.414272 5.783784 5.413948 4.346650 5.520486 5.307701
s_linj_610690_DPsd_trunc 10.788868 6.692989 14.617349 NaN 12.881389 7.355279 10.090107 7.873377 7.713142 7.518116 ... 8.461957 6.278382 9.227213 6.783321 5.841060 7.550096 7.191732 4.922011 7.405898 11.879577
s_lint_700800_DPsd_trunc 13.008334 4.188447 6.278797 5.991372 4.800754 6.452870 5.338793 3.525517 5.302861 5.957211 ... 7.897561 3.474329 9.170531 4.447257 3.353788 8.064835 3.622448 3.628472 5.876414 9.321889
s_lint_500600_DPsd_trunc 12.486970 3.763389 7.094297 4.338958 3.428162 6.109977 7.413205 3.699728 4.834872 6.247794 ... 9.205697 3.589876 9.466895 3.924627 2.970704 5.239500 6.837897 5.603176 5.913442 4.700504
s_linj_700800_DPsd_trunc 8.344733 5.658566 8.351930 NaN 4.806744 7.484739 7.572755 5.879357 6.601137 6.673417 ... 8.888837 5.307915 12.374330 5.832539 5.775269 5.086778 5.948107 5.018592 4.189604 10.555065
s_linj_500600_DPsd_trunc 9.660953 6.813903 14.502102 NaN 9.550193 11.361092 10.270239 11.104630 8.447056 6.763741 ... 11.726403 7.186386 13.197983 8.916590 6.994755 8.385819 9.242493 10.248535 5.844371 8.385738

32 rows × 99 columns


In [47]:
dft1 = df_to_analyze['s_phase5t_s4a_DPm_trunc']
dft2 = df_to_analyze['s_phase8j_s4a_DPm_trunc']

#dft2.corr(dft1)

dft1.corr(dft2)


Out[47]:
0.065833593780387181

In [64]:
#mna = match('5._DPm|8._DPm|5.2_DPm|8.2_DPm')
#mna.to_csv('perc_negative_asynchrony_20141008.csv')

In [18]:
phase_sections_means = match('a_DPm|b_DPm')
phase_sections_sd = match('a_DPsd|b_DPsd')

match('nonzero').T


Out[18]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SCAL_qmusic_singinghours_nonzero 1 0 0 0 0 0 0 0 0 0 ... 0 1 0 1 0 0 0 0 0 0
SCAL_qmusic_singingtimes_nonzero 0 0 0 0 0 0 0 0 0 0 ... 0 1 0 1 0 0 0 0 0 0
SCAL_qmusic_dancehours_nonzero 1 1 0 1 1 0 0 0 1 1 ... 1 0 1 1 1 1 1 1 0 0
SCAL_qmusic_instrumenthours_nonzero 0 0 0 0 1 0 0 0 0 0 ... 0 1 0 1 1 0 1 1 0 0
SCAL_qmusic_drumhours_nonzero 0 0 0 0 0 0 0 0 0 0 ... 0 1 0 0 0 0 0 1 0 0
SCAL_qmusic_behaviors_09_danceprv_nonzero 1 1 0 1 1 1 0 1 1 0 ... 0 0 1 1 1 1 0 0 1 1
SCAL_qmusic_behaviors_10_dancepub_nonzero 0 1 0 1 1 0 0 0 1 1 ... 0 0 1 0 1 1 1 1 0 1
SCAL_qmusic_gamehoursall_nonzero 1 0 0 0 1 1 0 0 1 1 ... 1 1 1 0 1 1 0 1 0 1
SCAL_qmusic_gamehoursdrumsticks_nonzero 0 0 0 0 1 0 0 0 1 1 ... 0 1 0 0 0 0 0 1 0 0

9 rows × 99 columns


In [4]:
#for c in range(35):
#    s = phase_sections_sd.ix[:,c]
#    m = phase_sections_means.ix[:,c]
#    print phase_sections_sd.columns[c]
#    print phase_sections_means.columns[c]
#    print s.corr(m)

In [4]:
#matchq('behaviors_')

pasted = '''
SCAL_sex_femalezero
SCAL_calc_wasivocab_totalrawscore
SCAL_calc_wasimatrix_totalscore
SCAL_calc_wasivocab_tscore
SCAL_calc_wasimatrix_tscore
SCAL_calc_wasi_tscore_total
SCAL_calc_fsiq2
SCAL_calc_bfi_extraversion
SCAL_calc_bfi_agreeableness
SCAL_calc_bfi_conscientiousness
SCAL_calc_bfi_neuroticism
SCAL_calc_bfi_openness
SCAL_session_taskorder
SCAL_order_500ms_first
SCAL_order_rhythmfirst

SCAL_qbasic_hearingdeficityn
SCAL_qbasic_injuriesyn
SCAL_qbasic_exerciseyn
SCAL_qbasic_neurodisorderyn
SCAL_qmusic_singingyn
SCAL_qmusic_singinghours     --> NONZERO
SCAL_qmusic_singingtimes     --> NONZERO
SCAL_qmusic_dancelevel       --> LN1P
SCAL_qmusic_instrumentlevel  --> good

SCAL_qmusic_dancehours       --> NONZERO
SCAL_qmusic_instrumenthours  --> NONZERO

SCAL_qmusic_danceyn
SCAL_qmusic_instrumentyn
SCAL_qmusic_gameyn
SCAL_qmusic_drumsyn

SCAL_qmusic_gamenames          --> string
SCAL_qmusic_gamehoursall         --> NONZERO
SCAL_qmusic_gamehoursdrumsticks  --> NONZERO
SCAL_qmusic_drumstyles           --> string
SCAL_qmusic_drumhours             --> NONZERO
SCAL_qmusic_drumlevel             --> NONZERO
SCAL_qmusic_behaviors_07_yourself    --> LN1P
SCAL_qmusic_behaviors_08_otherprs    --> LN1P
SCAL_qmusic_behaviors_09_danceprv    --> LN1P
SCAL_qmusic_behaviors_10_dancepub    --> NONZERO
SCAL_qmusic_behaviors_11_urgemove    --> NONZERO
SCAL_qmusic_behaviors_12_friendstaste  --> good
SCAL_qmusic_behaviors_13_sharingint    --> good
SCAL_qmusic_behaviors_14_getinterest   --> good


'''
tolist = pasted.split('\n') 

nonzero = filter(lambda i: i.split(" ")[-1] == "NONZERO", tolist)
nonzero = [i.split(" ")[0] for i in nonzero]
assert len(nonzero) == pasted.count('NONZERO')

LN1P = filter(lambda i: i.split(" ")[-1] == "LN1P", tolist)
LN1P = [i.split(" ")[0] for i in LN1P]
assert len(LN1P) == pasted.count('LN1P')


tolist = [i.replace("--> good", "") for i in tolist]

tolist = filter(lambda i: "-->" not in i, tolist)

tolist = [i.strip() for i in tolist]
tolist = filter(lambda i: i != "", tolist)

LN1P


Out[4]:
['SCAL_qmusic_dancelevel',
 'SCAL_qmusic_behaviors_07_yourself',
 'SCAL_qmusic_behaviors_08_otherprs',
 'SCAL_qmusic_behaviors_09_danceprv']

In [5]:
match = lambda x: concat_matches(dfo, x)

df_q = match('SCAL_qbasic|SCAL_qmusic')

matchq = lambda x: concat_matches(df_q, x)

rnot = lambda r: '^((?!' + r + ').)*$'

#scales = concat_matches(scales, '^((?!notes).)*$')  #hacky "does not contain 'notes' matcher

In [6]:
scales_keep = dfo[['SCAL_qmusic_instrumentlevel',
                   'SCAL_qmusic_behaviors_12_friendstaste',
                   
                   ]]

plist = lambda l: '\n'.join(l)

print plist(match('SCAL_').columns)

#print('\n'.join(list(match('SCAL_').columns)))


SCAL_session_day
SCAL_session_time
SCAL_session_isfemale
SCAL_exclusion_jitterlinearmissing
SCAL_exclusion_rhythmadminerror
SCAL_sex_femalezero
SCAL_participant_age
SCAL_calc_wasivocab_totalrawscore
SCAL_calc_wasimatrix_totalscore
SCAL_calc_wasivocab_tscore
SCAL_calc_wasimatrix_tscore
SCAL_calc_wasi_tscore_total
SCAL_calc_fsiq2
SCAL_calc_bfi_extraversion
SCAL_calc_bfi_agreeableness
SCAL_calc_bfi_conscientiousness
SCAL_calc_bfi_neuroticism
SCAL_calc_bfi_openness
SCAL_calc_qmusic_socialimportance
SCAL_session_taskorder
SCAL_order_500ms_first
SCAL_order_rhythmfirst
SCAL_notes_csv_cleaning
SCAL_notes_adminerror
SCAL_notes_methodchange
SCAL_notes_participantissue
SCAL_notes_observations
SCAL_notes_inclusion
SCAL_notes_language
SCAL_notes_temp
SCAL_notes_wasivocab
SCAL_notes_wasimatrix
SCAL_notes_bfi
SCAL_notes_qbasic_hearing
SCAL_notes_qbasic_injuries
SCAL_notes_qbasic_exercise
SCAL_notes_qbasic_neurodisorder
SCAL_notes_qbasic_physexclusion
SCAL_notes_qbasic_nonstraight
SCAL_notes_qbasic_heightweight
SCAL_notes_qbasic_handedness
SCAL_notes_qmusic_dance
SCAL_notes_qmusic_instrument
SCAL_notes_qmusic_otherexper
SCAL_notes_qmusic_behaviors
SCAL_notes_qmusic_singing
SCAL_wasivocab_itemscore01_fish
SCAL_wasivocab_itemscore02_shovel
SCAL_wasivocab_itemscore03_shell
SCAL_wasivocab_itemscore04_shirt
SCAL_wasivocab_itemscore05_car
SCAL_wasivocab_itemscore06_lamp
SCAL_wasivocab_itemscore07_bird
SCAL_wasivocab_itemscore08_tongue
SCAL_wasivocab_itemscore09_pet
SCAL_wasivocab_itemscore10_lunch
SCAL_wasivocab_itemscore11_bell
SCAL_wasivocab_itemscore12_calendar
SCAL_wasivocab_itemscore13_alligator
SCAL_wasivocab_itemscore14_dance
SCAL_wasivocab_itemscore15_summer
SCAL_wasivocab_itemscore16_reveal
SCAL_wasivocab_itemscore17_decade
SCAL_wasivocab_itemscore18_entertain
SCAL_wasivocab_itemscore19_tradition
SCAL_wasivocab_itemscore20_enthusiastic
SCAL_wasivocab_itemscore21_improvise
SCAL_wasivocab_itemscore22_haste
SCAL_wasivocab_itemscore23_trend
SCAL_wasivocab_itemscore24_impulse
SCAL_wasivocab_itemscore25_ruminate
SCAL_wasivocab_itemscore26_mollify
SCAL_wasivocab_itemscore27_extirpate
SCAL_wasivocab_itemscore28_panacea
SCAL_wasivocab_itemscore29_perfunctory
SCAL_wasivocab_itemscore30_insipid
SCAL_wasivocab_itemscore31_pavid
SCAL_wasimatrix_itemscore01
SCAL_wasimatrix_itemscore02
SCAL_wasimatrix_itemscore03
SCAL_wasimatrix_itemscore04
SCAL_wasimatrix_itemscore05
SCAL_wasimatrix_itemscore06
SCAL_wasimatrix_itemscore07
SCAL_wasimatrix_itemscore08
SCAL_wasimatrix_itemscore09
SCAL_wasimatrix_itemscore10
SCAL_wasimatrix_itemscore11
SCAL_wasimatrix_itemscore12
SCAL_wasimatrix_itemscore13
SCAL_wasimatrix_itemscore14
SCAL_wasimatrix_itemscore15
SCAL_wasimatrix_itemscore16
SCAL_wasimatrix_itemscore17
SCAL_wasimatrix_itemscore18
SCAL_wasimatrix_itemscore19
SCAL_wasimatrix_itemscore20
SCAL_wasimatrix_itemscore21
SCAL_wasimatrix_itemscore22
SCAL_wasimatrix_itemscore23
SCAL_wasimatrix_itemscore24
SCAL_wasimatrix_itemscore25
SCAL_wasimatrix_itemscore26
SCAL_wasimatrix_itemscore27
SCAL_wasimatrix_itemscore28
SCAL_wasimatrix_itemscore29
SCAL_wasimatrix_itemscore30
SCAL_qbasic_isfemale
SCAL_qbasic_age
SCAL_qbasic_ethnicity_selected
SCAL_qbasic_ethnicity_white
SCAL_qbasic_ethnicity_nativeam
SCAL_qbasic_ethnicity_hispanic
SCAL_qbasic_ethnicity_hawaiianpac
SCAL_qbasic_ethnicity_black
SCAL_qbasic_ethnicity_eastasian
SCAL_qbasic_ethnicity_southasian
SCAL_qbasic_ethnicity_middleeastern
SCAL_qbasic_ethnicity_noneofthese
SCAL_qbasic_ethnicityother
SCAL_qbasic_ethnicitynotes
SCAL_qbasic_relationshipyn
SCAL_qbasic_relationshipyears
SCAL_qbasic_relationshipmonths
SCAL_calc_qbasic_rel_totalmonths
SCAL_qbasic_marriedyn
SCAL_qbasic_livingwithyn
SCAL_qbasic_straightyn
SCAL_qbasic_totalheightin
SCAL_qbasic_weightlbs
SCAL_qbasic_handednessa
SCAL_qbasic_handednessb
SCAL_qbasic_handednessc
SCAL_qbasic_handednessd
SCAL_qbasic_handednesse
SCAL_qbasic_hearingdeficityn
SCAL_qbasic_injuriesyn
SCAL_qbasic_exerciseyn
SCAL_qbasic_neurodisorderyn
SCAL_qmusic_singingyn
SCAL_qmusic_singinghours
SCAL_qmusic_singingtimes
SCAL_qmusic_danceyn
SCAL_qmusic_dancestyle
SCAL_qmusic_dancelevel
SCAL_qmusic_dancehours
SCAL_qmusic_instrumentyn
SCAL_qmusic_instrumentlist
SCAL_qmusic_instrumentlevel
SCAL_qmusic_instrumenthours
SCAL_qmusic_gameyn
SCAL_qmusic_gamenames
SCAL_qmusic_gamehoursall
SCAL_qmusic_gamehoursdrumsticks
SCAL_qmusic_drumsyn
SCAL_qmusic_drumstyles
SCAL_qmusic_drumhours
SCAL_qmusic_drumlevel
SCAL_qmusic_behaviors_07_yourself
SCAL_qmusic_behaviors_08_otherprs
SCAL_qmusic_behaviors_09_danceprv
SCAL_qmusic_behaviors_10_dancepub
SCAL_qmusic_behaviors_11_urgemove
SCAL_qmusic_behaviors_12_friendstaste
SCAL_qmusic_behaviors_13_sharingint
SCAL_qmusic_behaviors_14_getinterest
SCAL_bfi_item01
SCAL_bfi_item02
SCAL_bfi_item03
SCAL_bfi_item04
SCAL_bfi_item05
SCAL_bfi_item06
SCAL_bfi_item07
SCAL_bfi_item08
SCAL_bfi_item09
SCAL_bfi_item10
SCAL_bfi_item11
SCAL_bfi_item12
SCAL_bfi_item13
SCAL_bfi_item14
SCAL_bfi_item15
SCAL_bfi_item16
SCAL_bfi_item17
SCAL_bfi_item18
SCAL_bfi_item19
SCAL_bfi_item20
SCAL_bfi_item21
SCAL_bfi_item22
SCAL_bfi_item23
SCAL_bfi_item24
SCAL_bfi_item25
SCAL_bfi_item26
SCAL_bfi_item27
SCAL_bfi_item28
SCAL_bfi_item29
SCAL_bfi_item30
SCAL_bfi_item31
SCAL_bfi_item32
SCAL_bfi_item33
SCAL_bfi_item34
SCAL_bfi_item35
SCAL_bfi_item36
SCAL_bfi_item37
SCAL_bfi_item38
SCAL_bfi_item39
SCAL_bfi_item40
SCAL_bfi_item41
SCAL_bfi_item42
SCAL_bfi_item43
SCAL_bfi_item44
SCAL_qmusic_singinghours_nonzero
SCAL_qmusic_singingtimes_nonzero
SCAL_qmusic_dancehours_nonzero
SCAL_qmusic_instrumenthours_nonzero
SCAL_qmusic_drumhours_nonzero
SCAL_qmusic_behaviors_09_danceprv_nonzero
SCAL_qmusic_behaviors_10_dancepub_nonzero
SCAL_qmusic_gamehoursall_nonzero
SCAL_qmusic_gamehoursdrumsticks_nonzero
SCAL_qmusic_behaviors_07_yourself_ln1p
SCAL_qmusic_behaviors_08_otherprs_ln1p
SCAL_qmusic_behaviors_09_danceprv_ln1p
SCAL_qmusic_dancelevel_ln1p
SCAL_qmusic_dancelevel_tophalf
SCAL_orders_500
SCAL_orders_800
SCAL_orders_iso
SCAL_orders_phase
SCAL_orders_linear
SCAL_order_iso5t1
SCAL_order_iso8t1
SCAL_order_iso5t2
SCAL_order_iso8t2
SCAL_order_psh5t
SCAL_order_psh8t
SCAL_order_lin5t
SCAL_order_lin8t
SCAL_order_iso5j
SCAL_order_iso8j
SCAL_order_psh5j
SCAL_order_psh8j
SCAL_order_lin5j
SCAL_order_lin8j
SCAL_order_isip5
SCAL_order_isip8

In [7]:
dfo['SCAL_orders_psh_first'] = (dfo.SCAL_orders_phase==0).astype(int)
dfo['SCAL_orders_lin_first'] = (dfo.SCAL_orders_linear==0).astype(int)
dfo['SCAL_orders_iso_first'] = (dfo.SCAL_orders_iso==0).astype(int)

match('orders').head(4).T


Out[7]:
015 016 017 018
SCAL_orders_500 1 0 0 0
SCAL_orders_800 0 1 1 1
SCAL_orders_iso 1 0 1 1
SCAL_orders_phase 2 2 2 0
SCAL_orders_linear 0 1 0 2
SCAL_orders_psh_first 0 0 0 1
SCAL_orders_lin_first 1 0 1 0
SCAL_orders_iso_first 0 1 0 0

In [8]:
dff = dfo[tolist]

dff.T


Out[8]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SCAL_session_isfemale 1 0 0 0 0 0 1 1 1 0 ... 1 0 1 1 0 1 0 1 0 1
SCAL_participant_age 21 19 23 19 19 18 19 23 18 21 ... 20 19 19 19 20 19 20 19 24 18
SCAL_calc_wasivocab_totalrawscore 37 48 41 37 40 41 39 42 33 36 ... 30 33 44 47 39 34 42 38 33 36
SCAL_calc_wasimatrix_totalscore 15 22 23 22 23 20 17 19 23 20 ... 19 20 25 22 27 20 22 23 24 20
SCAL_calc_wasivocab_tscore 49 78 55 50 55 57 53 57 44 47 ... 39 44 63 74 52 46 57 51 43 48
SCAL_calc_wasimatrix_tscore 38 53 54 53 55 49 42 46 55 48 ... 46 49 62 53 71 49 52 55 57 49
SCAL_calc_wasi_tscore_total 87 131 109 103 110 106 95 103 99 95 ... 85 93 125 127 123 95 109 106 100 97
SCAL_calc_fsiq2 89 127 108 102 109 105 95 102 99 95 ... 87 94 122 123 120 95 108 105 100 97
SCAL_calc_bfi_extraversion 2.125 4 2.75 3 4.5 1.75 2.125 3.25 2.5 2.625 ... 3.875 4.5 3 3.125 4.875 4.375 4.375 4.25 3 3.25
SCAL_calc_bfi_agreeableness 3.666667 4.111111 2.888889 4.111111 4.444444 4.222222 3.888889 3.555556 5 2.222222 ... 5 4.444444 4.444444 2.888889 3.666667 4.555556 4.111111 3.666667 3.111111 3.333333
SCAL_calc_bfi_conscientiousness 3.777778 2.777778 3.555556 4.555556 4 3.111111 3.888889 4.444444 3.444444 2.555556 ... 4.555556 4 2.888889 2.888889 3.444444 3.555556 2.888889 3.444444 3.222222 3.555556
SCAL_calc_bfi_neuroticism 3.125 3.25 3 3 1.75 2.625 3.875 3.25 2.125 3.5 ... 2.25 1.375 4.375 2.5 2.125 3.875 2.625 2.875 3.25 3.142857
SCAL_calc_bfi_openness 2.8 3.7 3.7 3.6 3.3 2.5 2.7 4.7 4.2 3.2 ... 4.3 3.6 3.6 4.3 4.4 3 3.9 4.3 4.9 4.2
SCAL_session_taskorder 3. Lin, Iso, Jump 1. Iso, Lin, Jump 3. Lin, Iso, Jump 5. Jump, Iso, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 2. Iso, Jump, Lin ... 2. Iso, Jump, Lin 5. Jump, Iso, Lin 5. Jump, Iso, Lin 2. Iso, Jump, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 5. Jump, Iso, Lin 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso
SCAL_order_500ms_first 0 1 1 1 1 0 0 0 1 0 ... 0 0 0 0 1 1 1 1 0 1
SCAL_order_rhythmfirst 0 0 1 1 0 0 1 0 1 1 ... 0 1 1 0 0 1 1 0 0 0
SCAL_qbasic_hearingdeficityn 0 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
SCAL_qbasic_injuriesyn 0 1 0 0 0 0 0 0 0 1 ... 0 0 0 0 1 0 0 0 0 0
SCAL_qbasic_exerciseyn 0 0 1 1 0 0 0 0 0 1 ... 0 0 0 0 1 0 0 0 0 0
SCAL_qbasic_neurodisorderyn 0 0 1 0 0 0 1 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
SCAL_qmusic_singingyn 1 1 0 0 1 0 0 0 0 0 ... 0 1 1 1 0 0 0 0 0 0
SCAL_qmusic_instrumentlevel 0 3 3 0 2 0 1 4 2 0 ... 0 4 4 4 3 0 3 3 0 2
SCAL_qmusic_danceyn 1 1 1 1 1 0 0 0 1 1 ... 1 0 1 1 1 1 1 1 0 0
SCAL_qmusic_instrumentyn 0 1 1 0 1 0 1 1 1 0 ... 0 1 1 1 1 0 1 1 0 1
SCAL_qmusic_gameyn 1 1 1 1 1 1 0 1 1 1 ... 1 1 1 1 1 1 1 1 0 1
SCAL_qmusic_drumsyn 0 0 0 0 0 0 0 0 0 0 ... 0 1 0 0 0 0 0 1 0 0
SCAL_qmusic_behaviors_12_friendstaste 3 3 1 3 4 3 2 2 4 4 ... 7 4 2 3 5 5 4 6 5 5
SCAL_qmusic_behaviors_13_sharingint 4 5 1 4 2 4 3 5 1 3 ... 5 4 2 4 7 6 5 7 5 5
SCAL_qmusic_behaviors_14_getinterest 5 5 4 4 2 4 2 3 7 4 ... 5 5 3 1 7 5 5 7 5 6

29 rows × 99 columns


In [9]:
match('order').T


Out[9]:
015 016 017 018 019 020 021 022 024 025 ... 112 113 114 115 116 117 118 119 120 121
SCAL_session_taskorder 3. Lin, Iso, Jump 1. Iso, Lin, Jump 3. Lin, Iso, Jump 5. Jump, Iso, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso 1. Iso, Lin, Jump 2. Iso, Jump, Lin ... 2. Iso, Jump, Lin 5. Jump, Iso, Lin 5. Jump, Iso, Lin 2. Iso, Jump, Lin 3. Lin, Iso, Jump 6. Jump, Lin, Iso 5. Jump, Iso, Lin 6. Jump, Lin, Iso 1. Iso, Lin, Jump 6. Jump, Lin, Iso
SCAL_order_500ms_first 0 1 1 1 1 0 0 0 1 0 ... 0 0 0 0 1 1 1 1 0 1
SCAL_order_rhythmfirst 0 0 1 1 0 0 1 0 1 1 ... 0 1 1 0 0 1 1 0 0 0
SCAL_notes_qbasic_neurodisorder ADD & general anxiety ADHD ...
SCAL_qbasic_neurodisorderyn 0 0 1 0 0 0 1 0 0 0 ... 0 0 0 0 0 0 0 0 0 0
SCAL_orders_500 1 0 0 0 0 1 1 1 0 1 ... 1 1 1 1 0 0 0 0 1 0
SCAL_orders_800 0 1 1 1 1 0 0 0 1 0 ... 0 0 0 0 1 1 1 1 0 1
SCAL_orders_iso 1 0 1 1 1 2 0 2 0 0 ... 0 1 1 0 1 2 1 2 0 2
SCAL_orders_phase 2 2 2 0 2 0 2 0 2 1 ... 1 0 0 1 2 0 0 0 2 0
SCAL_orders_linear 0 1 0 2 0 1 1 1 1 2 ... 2 2 2 2 0 1 2 1 1 1
SCAL_order_iso5t1 2 1 1 1 1 2 2 2 1 2 ... 2 2 2 2 1 1 1 1 2 1
SCAL_order_iso8t1 1 2 2 2 2 1 1 1 2 1 ... 1 1 1 1 2 2 2 2 1 2
SCAL_order_iso5t2 6 3 5 5 5 8 4 8 3 4 ... 4 6 6 4 5 7 5 7 4 7
SCAL_order_iso8t2 5 4 6 6 6 7 3 7 4 3 ... 3 5 5 3 6 8 6 8 3 8
SCAL_order_psh5t 8 7 7 3 7 4 8 4 7 6 ... 6 4 4 6 7 3 3 3 8 3
SCAL_order_psh8t 7 8 8 4 8 3 7 3 8 5 ... 5 3 3 5 8 4 4 4 7 4
SCAL_order_lin5t 4 5 3 7 3 6 6 6 5 8 ... 8 8 8 8 3 5 7 5 6 5
SCAL_order_lin8t 3 6 4 8 4 5 5 5 6 7 ... 7 7 7 7 4 6 8 6 5 6
SCAL_order_iso5j 12 9 11 11 11 14 10 14 9 10 ... 10 12 12 10 11 13 11 13 10 13
SCAL_order_iso8j 11 10 12 12 12 13 9 13 10 9 ... 9 11 11 9 12 14 12 14 9 14
SCAL_order_psh5j 14 13 13 9 13 10 14 10 13 12 ... 12 10 10 12 13 9 9 9 14 9
SCAL_order_psh8j 13 14 14 10 14 9 13 9 14 11 ... 11 9 9 11 14 10 10 10 13 10
SCAL_order_lin5j 10 11 9 13 9 12 12 12 11 14 ... 14 14 14 14 9 11 13 11 12 11
SCAL_order_lin8j 9 12 10 14 10 11 11 11 12 13 ... 13 13 13 13 10 12 14 12 11 12
SCAL_order_isip5 16 15 15 15 15 16 16 16 15 16 ... 16 16 16 16 15 15 15 15 16 15
SCAL_order_isip8 15 16 16 16 16 15 15 15 16 15 ... 15 15 15 15 16 16 16 16 15 16
SCAL_orders_psh_first 0 0 0 1 0 1 0 1 0 0 ... 0 1 1 0 0 1 1 1 0 1
SCAL_orders_lin_first 1 0 1 0 1 0 0 0 0 0 ... 0 0 0 0 1 0 0 0 0 0
SCAL_orders_iso_first 0 1 0 0 0 0 1 0 1 1 ... 1 0 0 1 0 0 0 0 1 0

29 rows × 99 columns


In [ ]:
hrs = dfo.SCAL_qmusic_danceyn

hrs[hrs > 0].count()

total = dfo.SCAL_qmusic_drumhours + dfo.SCAL_qmusic_instrumenthours + dfo.SCAL_qmusic_dancehours


def filter_outliers(series):
    # Tabachnik & fidell call +- 3.29 SD a removable/truncatable outlier
    return series[np.abs(series) <= 3.29 * series.std()]


trunc_count = 0


def truncate_outliers(series):    
    # Tabachnik & fidell call +- 3.29 SD a removable/truncatable outlier
    maxval = series.mean() + 3.29 * series.std()
    minval = series.mean() - 3.29 * series.std()
    trunc_count = 0
    
    def trunc(val):
        if val > maxval:
            trunc_count += 1
            return maxval
        elif val < minval:
            trunc_count += 1
            return minval
        else:
            return val
        
    s = series.apply(trunc)
    print('truncated {} of {} cases.'.format(trunc_count, len(s)))
    
    return s


truncate_outliers(total).hist()

In [11]:
dfo


Out[11]:
SCAL_session_day SCAL_session_time SCAL_session_isfemale SCAL_exclusion_jitterlinearmissing SCAL_exclusion_rhythmadminerror SCAL_sex_femalezero SCAL_participant_age SCAL_calc_wasivocab_totalrawscore SCAL_calc_wasimatrix_totalscore SCAL_calc_wasivocab_tscore ... SMSR_phase8t_s4a_DPsd_inv SMSR_phase5j_s4a_DPsd_inv SMSR_phase8j_s4a_DPsd_inv SMSR_phase5t_s4b_DPsd_inv SMSR_phase8t_s4b_DPsd_inv SMSR_phase5j_s4b_DPsd_inv SMSR_phase8j_s4b_DPsd_inv SCAL_orders_psh_first SCAL_orders_lin_first SCAL_orders_iso_first
015 20140228 1:00pm 1 0 0 0 21 37 15 49 ... 0.053945 0.109104 0.141834 0.044401 0.044053 0.080712 0.110317 0 1 0
016 20140303 9:10am 0 0 0 1 19 48 22 78 ... 0.307656 0.126311 0.228519 0.293895 0.322954 0.253038 0.277177 0 0 1
017 20140303 10:30am 0 0 0 1 23 41 23 55 ... 0.238160 NaN 0.267141 0.273082 0.369306 0.073817 0.143151 0 1 0
018 20140303 1:00pm 0 0 0 1 19 37 22 50 ... 0.280125 0.268595 0.472431 0.218647 0.329568 0.206339 0.196048 1 0 0
019 20140303 2:20pm 0 0 0 1 19 40 23 55 ... 0.218318 0.142223 0.230305 0.225257 0.360575 0.315614 0.268594 0 1 0
020 20140303 3:37pm 0 0 0 1 18 41 20 57 ... 0.200960 0.094811 0.091210 0.144236 0.251791 0.144323 0.139888 1 0 0
021 20140304 9:40am 1 0 0 0 19 39 17 53 ... 0.165609 0.387882 0.122095 0.239746 0.255567 0.267809 0.184375 0 0 1
022 20140304 12:30nn 1 0 0 0 23 42 19 57 ... 0.218622 0.103781 0.524508 0.268215 0.806137 0.166897 0.263083 1 0 0
024 20140304 3:20pm 1 0 0 0 18 33 23 44 ... 0.290449 0.162213 0.138587 0.305706 0.218173 0.200656 0.309556 0 0 1
025 20140304 4:50pm 0 0 0 1 21 36 20 47 ... NaN 0.096158 0.110128 0.187185 0.166658 0.353406 0.204062 0 0 1
026 20140305 8:00am 0 0 0 1 20 35 23 46 ... 0.315938 0.172583 0.242976 0.267496 0.427044 0.319051 0.164220 1 0 0
027 20140305 9:10am 0 0 0 1 19 39 22 53 ... 0.448790 0.335749 0.126193 0.517326 0.352330 0.160887 0.331544 0 1 0
028 20140305 3:40pm 0 0 0 1 18 44 23 63 ... 0.197235 0.109011 0.164658 0.155067 0.320924 0.167243 0.166183 0 0 1
029 20140306 8:20am 1 0 0 0 20 39 24 52 ... 0.192119 0.238632 0.098325 0.226234 0.100256 0.243489 0.150339 1 0 0
030 20140306 12:40nn 1 0 0 0 43 46 23 61 ... 0.354506 0.247562 0.110378 0.271160 0.230343 0.239115 0.180716 0 1 0
032 20140306 3:30pm 1 0 0 0 18 41 23 57 ... 0.288649 0.167086 0.493896 0.574432 0.358773 0.292778 0.391160 0 0 1
033 20140307 1:00pm 0 0 0 1 19 43 24 61 ... 0.142608 0.091577 0.105533 0.283750 0.321588 0.215825 0.247249 0 0 1
034 20140307 2:20pm 0 0 0 1 19 39 21 53 ... 0.253809 0.300227 0.213578 0.292100 0.267982 0.386933 0.173508 1 0 0
035 20140310 10:30am 1 0 0 0 20 42 22 57 ... 0.332722 NaN 0.165752 0.208685 0.224142 0.201219 0.174894 1 0 0
036 20140310 2:20pm 1 0 0 0 19 32 19 43 ... 0.385685 0.122914 0.096976 0.130206 0.152122 0.098771 0.088321 0 1 0
037 20140311 9:40am 1 0 0 0 18 41 28 57 ... 0.087951 0.089036 0.096754 0.156003 0.199734 0.440983 0.250549 0 1 0
038 20140311 3:10pm 0 0 0 1 18 41 22 57 ... 0.186885 0.213108 0.196591 0.403707 0.215995 0.313550 0.071964 1 0 0
039 20140312 12:00nn 0 0 0 1 21 27 25 35 ... 0.221292 0.124040 0.118965 0.371071 0.508101 0.140520 0.216045 0 0 1
040 20140325 5:10pm 0 0 0 1 21 39 26 52 ... 0.505729 0.160670 0.152935 0.336509 0.284273 0.499273 0.151792 0 0 1
041 20140326 1:00pm 1 0 0 0 23 40 23 53 ... 0.662521 NaN 0.121985 0.416434 0.431053 0.093620 0.195735 0 0 1
043 20140328 11:00am 1 0 0 0 19 29 15 38 ... 0.126257 0.206833 0.166734 0.173898 0.198134 0.170268 0.141374 1 0 0
044 20140331 10:30am 1 0 0 0 18 40 22 55 ... 0.120922 0.100960 0.196223 0.176374 0.238373 0.157676 0.170921 0 1 0
046 20140331 1:30pm 0 0 0 1 18 38 17 51 ... NaN 0.107789 0.147044 0.156625 0.385439 0.229132 0.246827 0 1 0
047 20140401 9:10am 0 0 0 1 18 41 26 57 ... NaN 0.352100 0.113883 0.230409 0.195420 0.213305 0.143730 1 0 0
048 20140401 2:50pm 0 0 0 1 32 41 23 53 ... 0.082037 0.211633 0.181116 0.351736 0.140725 0.200187 0.232906 0 0 1
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
091 20140430 10:30am 1 0 0 0 23 40 23 53 ... 0.514594 NaN 0.133380 0.267509 0.457058 0.289365 0.363775 1 0 0
092 20140430 12:00nn 1 0 0 0 20 36 21 47 ... 1.463008 0.160003 0.141283 0.297839 0.311048 0.405914 0.283209 1 0 0
093 20140430 1:30pm 1 0 0 0 19 34 20 46 ... 0.126370 0.139741 0.158888 0.195304 0.175792 0.327514 0.207166 1 0 0
094 20140501 7:35am 1 0 0 0 22 35 20 46 ... 0.157942 0.570216 0.183847 0.226480 0.116993 0.158132 0.130149 0 0 1
095 20140501 9:00am 0 0 0 1 19 43 21 61 ... 0.623089 0.129448 0.157132 0.512506 0.308305 0.147790 0.277586 1 0 0
096 20140501 10:35am 1 0 0 0 22 40 26 53 ... 0.117796 0.158067 0.135327 0.231670 0.375871 0.314143 0.166200 0 1 0
097 20140502 9:00am 0 0 0 1 19 39 21 53 ... 0.167973 0.088569 0.106628 0.195924 0.328464 0.174956 0.169626 0 1 0
098 20140502 10:25am 0 0 0 1 21 38 26 50 ... 0.276621 NaN 0.230370 0.265347 0.420993 0.171184 0.278959 1 0 0
099 20140502 1:00pm 0 0 0 1 19 36 18 48 ... 0.136994 0.107712 0.276791 0.426067 0.214582 0.288515 0.197530 0 0 1
100 20140502 2:50pm 1 0 0 0 18 39 25 53 ... 0.413154 0.115105 0.154248 0.249031 0.207041 0.296783 0.164985 0 0 1
101 20140502 5:35pm 0 0 0 1 19 40 19 55 ... 0.238751 0.102274 0.224906 0.203175 0.223450 0.235341 0.160918 0 0 1
102 20140503 9:30am 1 0 0 0 18 41 21 57 ... 0.252654 0.113860 0.187137 0.360029 0.286429 0.236990 0.267650 1 0 0
103 20140503 10:50am 0 0 0 1 21 41 20 55 ... 0.091374 0.109908 0.086229 0.285006 0.328613 0.147275 0.190954 0 1 0
104 20140505 1:30pm 1 0 0 0 21 29 21 37 ... 0.193879 0.097889 NaN 0.068193 0.105806 0.058434 0.108806 1 0 0
105 20140505 5:50pm 1 0 0 0 19 37 22 50 ... 0.226203 0.055243 0.097951 0.183074 0.253580 0.133442 0.099407 0 0 1
107 20140506 12:00nn 0 0 0 1 20 43 21 59 ... 0.315815 0.168736 0.123241 0.284850 0.254540 0.292223 0.174521 0 0 1
108 20140507 12:00nn 1 0 0 0 19 37 19 50 ... 0.121067 0.127023 0.066406 0.125400 0.258994 0.138733 0.187978 0 0 1
109 20140507 1:30pm 1 0 0 0 21 34 22 45 ... NaN 0.197451 0.256688 0.332181 0.248028 0.230421 0.304478 0 1 0
110 20140507 3:00pm 0 0 0 1 19 47 21 74 ... 0.746870 0.240477 0.175004 0.264562 0.400076 0.157301 0.301736 1 0 0
111 20140507 5:00pm 1 0 0 0 20 41 26 55 ... 0.180501 0.153378 0.201756 0.282680 0.342289 0.218383 0.228682 0 1 0
112 20140508 12:20nn 1 0 0 0 20 30 19 39 ... 0.099765 0.086206 0.141479 0.201735 0.362215 0.215882 0.137384 0 0 1
113 20140508 2:00pm 0 0 0 1 19 33 20 44 ... 0.225395 0.903250 0.122948 0.536510 0.361752 0.085727 0.363479 1 0 0
114 20140508 5:00pm 1 0 0 0 19 44 25 63 ... 0.140522 0.155581 0.097414 0.183771 0.173245 0.130977 0.136999 1 0 0
115 20140508 6:30pm 1 0 0 0 19 47 22 74 ... 0.212135 0.125535 0.137462 0.161361 0.261306 0.281474 0.248404 0 0 1
116 20140509 7:30am 0 0 0 1 20 39 27 52 ... 0.209886 0.114240 0.128472 0.467552 0.446516 0.247116 0.263422 0 1 0
117 20140509 10:30am 1 0 0 0 19 34 20 46 ... 0.253321 1.172359 0.110528 0.374751 0.127035 0.130191 0.133639 1 0 0
118 20140509 12:00nn 0 0 0 1 20 42 22 57 ... 0.233624 0.137326 0.156730 0.327467 0.249650 0.140216 0.182431 1 0 0
119 20140509 3:00pm 1 0 0 0 19 38 23 51 ... 0.296574 0.142627 0.101641 0.353110 0.353557 0.222948 0.247663 1 0 0
120 20140509 4:30pm 0 0 0 1 24 33 24 43 ... 0.136025 0.138683 0.160969 0.344341 0.216403 0.263427 0.192488 0 0 1
121 20140509 7:30pm 1 0 0 0 18 36 20 48 ... NaN 0.212650 0.142823 0.273276 0.200202 0.174823 0.182236 1 0 0

99 rows × 638 columns


In [62]:
#dfo.scales.bfi_item39.hist()

dfo.sms.phase5t_DPsd.apply(lambda x: 1/x).hist()


Out[62]:
<matplotlib.axes.AxesSubplot at 0xf4e81d0>

SPSS SYNTAX GENERATION


In [183]:
def variable_labels_syntax(varlist):
    var_labels = "VARIABLE LABELS \n{vlist}."
    vl_item = "    {var} '{label}'\n"
    vl_list = '\n'.join([vl_item.format(var=v, label=l) for (v, l) in varlist])
    return var_labels.format(vlist=vl_list)

#testing
print variable_labels_syntax(varlist = [("fff", "sssss")])


VARIABLE LABELS 
    fff 'sssss'
.

In [165]:
bfi={}
bfi['E'] = ['1', '6R', '11', '16', '21R', '26', '31R', '36']
bfi['A'] = ['2R', '7', '12R', '17', '22', '27R', '32', '37R', '42']
bfi['C']  = ['3', '8R', '13', '18R', '23R', '28', '33', '38', '43R']
bfi['N']  = ['4', '9R', '14', '19', '24R', '29', '34R', '39']
bfi['O']  = ['5', '10', '15', '20', '25', '30', '35R', '40', '41R', '44']

bfi_score = {}

for k, v in bfi.items():
    for i in v:
        reverse_scored = 'R' in i
        if reverse_scored:
            i = i[:-1]
        item = int(i)
        bfi_score[item] = {'factor': k,
                           'reverse_scored': reverse_scored}
    
bfi_score


Out[165]:
{1: {'factor': 'E', 'reverse_scored': False},
 2: {'factor': 'A', 'reverse_scored': True},
 3: {'factor': 'C', 'reverse_scored': False},
 4: {'factor': 'N', 'reverse_scored': False},
 5: {'factor': 'O', 'reverse_scored': False},
 6: {'factor': 'E', 'reverse_scored': True},
 7: {'factor': 'A', 'reverse_scored': False},
 8: {'factor': 'C', 'reverse_scored': True},
 9: {'factor': 'N', 'reverse_scored': True},
 10: {'factor': 'O', 'reverse_scored': False},
 11: {'factor': 'E', 'reverse_scored': False},
 12: {'factor': 'A', 'reverse_scored': True},
 13: {'factor': 'C', 'reverse_scored': False},
 14: {'factor': 'N', 'reverse_scored': False},
 15: {'factor': 'O', 'reverse_scored': False},
 16: {'factor': 'E', 'reverse_scored': False},
 17: {'factor': 'A', 'reverse_scored': False},
 18: {'factor': 'C', 'reverse_scored': True},
 19: {'factor': 'N', 'reverse_scored': False},
 20: {'factor': 'O', 'reverse_scored': False},
 21: {'factor': 'E', 'reverse_scored': True},
 22: {'factor': 'A', 'reverse_scored': False},
 23: {'factor': 'C', 'reverse_scored': True},
 24: {'factor': 'N', 'reverse_scored': True},
 25: {'factor': 'O', 'reverse_scored': False},
 26: {'factor': 'E', 'reverse_scored': False},
 27: {'factor': 'A', 'reverse_scored': True},
 28: {'factor': 'C', 'reverse_scored': False},
 29: {'factor': 'N', 'reverse_scored': False},
 30: {'factor': 'O', 'reverse_scored': False},
 31: {'factor': 'E', 'reverse_scored': True},
 32: {'factor': 'A', 'reverse_scored': False},
 33: {'factor': 'C', 'reverse_scored': False},
 34: {'factor': 'N', 'reverse_scored': True},
 35: {'factor': 'O', 'reverse_scored': True},
 36: {'factor': 'E', 'reverse_scored': False},
 37: {'factor': 'A', 'reverse_scored': True},
 38: {'factor': 'C', 'reverse_scored': False},
 39: {'factor': 'N', 'reverse_scored': False},
 40: {'factor': 'O', 'reverse_scored': False},
 41: {'factor': 'O', 'reverse_scored': True},
 42: {'factor': 'A', 'reverse_scored': False},
 43: {'factor': 'C', 'reverse_scored': True},
 44: {'factor': 'O', 'reverse_scored': False}}

In [131]:
print('ALTER TYPE')
print(' (F8.2)\n'.join(others) + ' (F8.2)')
print('.')

# Oops - these aren't the values in the dfo_flat output. Need to do this there instead,
# or import from the CSV I made there.


ALTER TYPE
session_isfemale (F8.2)
exclusion_jitterlinearmissing (F8.2)
exclusion_rhythmadminerror (F8.2)
sex_femalezero (F8.2)
participant_age (F8.2)
calc_wasivocab_totalrawscore (F8.2)
calc_wasimatrix_totalscore (F8.2)
calc_wasivocab_tscore (F8.2)
calc_wasimatrix_tscore (F8.2)
calc_wasi_tscore_total (F8.2)
calc_fsiq2 (F8.2)
calc_bfi_extraversion (F8.2)
calc_bfi_agreeableness (F8.2)
calc_bfi_conscientiousness (F8.2)
calc_bfi_neuroticism (F8.2)
calc_bfi_openness (F8.2)
calc_qmusic_socialimportance (F8.2)
order_500ms_first (F8.2)
order_rhythmfirst (F8.2)
wasivocab_itemscore01_fish (F8.2)
wasivocab_itemscore02_shovel (F8.2)
wasivocab_itemscore03_shell (F8.2)
wasivocab_itemscore04_shirt (F8.2)
wasivocab_itemscore05_car (F8.2)
wasivocab_itemscore06_lamp (F8.2)
wasivocab_itemscore07_bird (F8.2)
wasivocab_itemscore08_tongue (F8.2)
wasivocab_itemscore09_pet (F8.2)
wasivocab_itemscore10_lunch (F8.2)
wasivocab_itemscore11_bell (F8.2)
wasivocab_itemscore12_calendar (F8.2)
wasivocab_itemscore13_alligator (F8.2)
wasivocab_itemscore14_dance (F8.2)
wasivocab_itemscore15_summer (F8.2)
wasivocab_itemscore16_reveal (F8.2)
wasivocab_itemscore17_decade (F8.2)
wasivocab_itemscore18_entertain (F8.2)
wasivocab_itemscore19_tradition (F8.2)
wasivocab_itemscore20_enthusiastic (F8.2)
wasivocab_itemscore21_improvise (F8.2)
wasivocab_itemscore22_haste (F8.2)
wasivocab_itemscore23_trend (F8.2)
wasivocab_itemscore24_impulse (F8.2)
wasivocab_itemscore25_ruminate (F8.2)
wasivocab_itemscore26_mollify (F8.2)
wasivocab_itemscore27_extirpate (F8.2)
wasivocab_itemscore28_panacea (F8.2)
wasivocab_itemscore29_perfunctory (F8.2)
wasivocab_itemscore30_insipid (F8.2)
wasivocab_itemscore31_pavid (F8.2)
wasimatrix_itemscore01 (F8.2)
wasimatrix_itemscore02 (F8.2)
wasimatrix_itemscore03 (F8.2)
wasimatrix_itemscore04 (F8.2)
wasimatrix_itemscore05 (F8.2)
wasimatrix_itemscore06 (F8.2)
wasimatrix_itemscore07 (F8.2)
wasimatrix_itemscore08 (F8.2)
wasimatrix_itemscore09 (F8.2)
wasimatrix_itemscore10 (F8.2)
wasimatrix_itemscore11 (F8.2)
wasimatrix_itemscore12 (F8.2)
wasimatrix_itemscore13 (F8.2)
wasimatrix_itemscore14 (F8.2)
wasimatrix_itemscore15 (F8.2)
wasimatrix_itemscore16 (F8.2)
wasimatrix_itemscore17 (F8.2)
wasimatrix_itemscore18 (F8.2)
wasimatrix_itemscore19 (F8.2)
wasimatrix_itemscore20 (F8.2)
wasimatrix_itemscore21 (F8.2)
wasimatrix_itemscore22 (F8.2)
wasimatrix_itemscore23 (F8.2)
wasimatrix_itemscore24 (F8.2)
wasimatrix_itemscore25 (F8.2)
wasimatrix_itemscore26 (F8.2)
wasimatrix_itemscore27 (F8.2)
wasimatrix_itemscore28 (F8.2)
wasimatrix_itemscore29 (F8.2)
wasimatrix_itemscore30 (F8.2)
qbasic_isfemale (F8.2)
qbasic_age (F8.2)
qbasic_ethnicity_white (F8.2)
qbasic_ethnicity_nativeam (F8.2)
qbasic_ethnicity_hispanic (F8.2)
qbasic_ethnicity_hawaiianpac (F8.2)
qbasic_ethnicity_black (F8.2)
qbasic_ethnicity_eastasian (F8.2)
qbasic_ethnicity_southasian (F8.2)
qbasic_ethnicity_middleeastern (F8.2)
qbasic_ethnicity_noneofthese (F8.2)
qbasic_relationshipyn (F8.2)
qbasic_relationshipyears (F8.2)
qbasic_relationshipmonths (F8.2)
calc_qbasic_rel_totalmonths (F8.2)
qbasic_marriedyn (F8.2)
qbasic_livingwithyn (F8.2)
qbasic_straightyn (F8.2)
qbasic_totalheightin (F8.2)
qbasic_weightlbs (F8.2)
qbasic_handednessa (F8.2)
qbasic_handednessb (F8.2)
qbasic_handednessc (F8.2)
qbasic_handednessd (F8.2)
qbasic_handednesse (F8.2)
qbasic_hearingdeficityn (F8.2)
qbasic_injuriesyn (F8.2)
qbasic_exerciseyn (F8.2)
qbasic_neurodisorderyn (F8.2)
qmusic_singingyn (F8.2)
qmusic_singinghours (F8.2)
qmusic_singingtimes (F8.2)
qmusic_danceyn (F8.2)
qmusic_dancelevel (F8.2)
qmusic_dancehours (F8.2)
qmusic_instrumentyn (F8.2)
qmusic_instrumentlevel (F8.2)
qmusic_instrumenthours (F8.2)
qmusic_gameyn (F8.2)
qmusic_gamehoursall (F8.2)
qmusic_gamehoursdrumsticks (F8.2)
qmusic_drumsyn (F8.2)
qmusic_drumhours (F8.2)
qmusic_drumlevel (F8.2)
qmusic_behaviors_07_yourself (F8.2)
qmusic_behaviors_08_otherprs (F8.2)
qmusic_behaviors_09_danceprv (F8.2)
qmusic_behaviors_10_dancepub (F8.2)
qmusic_behaviors_11_urgemove (F8.2)
qmusic_behaviors_12_friendstaste (F8.2)
qmusic_behaviors_13_sharingint (F8.2)
qmusic_behaviors_14_getinterest (F8.2)
bfi_item01 (F8.2)
bfi_item02 (F8.2)
bfi_item03 (F8.2)
bfi_item04 (F8.2)
bfi_item05 (F8.2)
bfi_item06 (F8.2)
bfi_item07 (F8.2)
bfi_item08 (F8.2)
bfi_item09 (F8.2)
bfi_item10 (F8.2)
bfi_item11 (F8.2)
bfi_item12 (F8.2)
bfi_item13 (F8.2)
bfi_item14 (F8.2)
bfi_item15 (F8.2)
bfi_item16 (F8.2)
bfi_item17 (F8.2)
bfi_item18 (F8.2)
bfi_item19 (F8.2)
bfi_item20 (F8.2)
bfi_item21 (F8.2)
bfi_item22 (F8.2)
bfi_item23 (F8.2)
bfi_item24 (F8.2)
bfi_item25 (F8.2)
bfi_item26 (F8.2)
bfi_item27 (F8.2)
bfi_item28 (F8.2)
bfi_item29 (F8.2)
bfi_item30 (F8.2)
bfi_item31 (F8.2)
bfi_item32 (F8.2)
bfi_item33 (F8.2)
bfi_item34 (F8.2)
bfi_item35 (F8.2)
bfi_item36 (F8.2)
bfi_item37 (F8.2)
bfi_item38 (F8.2)
bfi_item39 (F8.2)
bfi_item40 (F8.2)
bfi_item41 (F8.2)
bfi_item42 (F8.2)
bfi_item43 (F8.2)
bfi_item44 (F8.2)
qmusic_singinghours_nonzero (F8.2)
qmusic_singingtimes_nonzero (F8.2)
qmusic_dancehours_nonzero (F8.2)
qmusic_instrumenthours_nonzero (F8.2)
qmusic_drumhours_nonzero (F8.2)
qmusic_behaviors_09_danceprv_nonzero (F8.2)
qmusic_behaviors_10_dancepub_nonzero (F8.2)
qmusic_gamehoursall_nonzero (F8.2)
qmusic_gamehoursdrumsticks_nonzero (F8.2)
qmusic_behaviors_07_yourself_ln1p (F8.2)
qmusic_behaviors_08_otherprs_ln1p (F8.2)
qmusic_behaviors_09_danceprv_ln1p (F8.2)
qmusic_dancelevel_ln1p (F8.2)
qmusic_dancelevel_tophalf (F8.2)
order_iso500t1 (F8.2)
order_iso800t1 (F8.2)
order_iso500t2 (F8.2)
order_iso800t2 (F8.2)
order_phase500 (F8.2)
order_phase800 (F8.2)
order_linear500 (F8.2)
order_linear800 (F8.2)
order_isip500 (F8.2)
order_isip800 (F8.2)
.

In [190]:
varlist = []
for k, v in bfi_score.items():
    name = "SCAL_bfi_item" + str(k)
    factor = v['factor']
    label = "BFI item {n} ({f})".format(n=k, f=factor)
    return
#bfi_vars


BFI item 1 (E)
BFI item 2 (A)
BFI item 3 (C)
BFI item 4 (N)
BFI item 5 (O)
BFI item 6 (E)
BFI item 7 (A)
BFI item 8 (C)
BFI item 9 (N)
BFI item 10 (O)
BFI item 11 (E)
BFI item 12 (A)
BFI item 13 (C)
BFI item 14 (N)
BFI item 15 (O)
BFI item 16 (E)
BFI item 17 (A)
BFI item 18 (C)
BFI item 19 (N)
BFI item 20 (O)
BFI item 21 (E)
BFI item 22 (A)
BFI item 23 (C)
BFI item 24 (N)
BFI item 25 (O)
BFI item 26 (E)
BFI item 27 (A)
BFI item 28 (C)
BFI item 29 (N)
BFI item 30 (O)
BFI item 31 (E)
BFI item 32 (A)
BFI item 33 (C)
BFI item 34 (N)
BFI item 35 (O)
BFI item 36 (E)
BFI item 37 (A)
BFI item 38 (C)
BFI item 39 (N)
BFI item 40 (O)
BFI item 41 (O)
BFI item 42 (A)
BFI item 43 (C)
BFI item 44 (O)