In [1]:
import numpy as np
import matplotlib.pyplot as plt
In [29]:
%matplotlib inline
plt.rcParams['figure.figsize'] = [12, 10]
In [3]:
def f(x, y):
return (1 - x/2 + x**5 + y**3) * np.exp(-x**2 - y**2)
In [4]:
n = 10
x = np.linspace(-3, 3, 3.5 * n)
y = np.linspace(-3, 3, 3.0 * n)
X, Y = np.meshgrid(x, y)
In [5]:
X
Out[5]:
In [6]:
len(x)
Out[6]:
In [7]:
len(X)
Out[7]:
In [8]:
len(Y)
Out[8]:
In [9]:
len(X[0])
Out[9]:
In [10]:
len(Y[0])
Out[10]:
In [11]:
Z = f(X, Y)
In [12]:
Z
Out[12]:
In [14]:
np.shape(Z)
Out[14]:
In [15]:
import random
In [ ]:
x = r
In [16]:
plt.hist2d?
In [21]:
np.random.randn?
In [22]:
np.random.normal?
In [23]:
x = np.random.randn(1000)
y = np.random.randn(1000)
In [32]:
plt.hist2d(x, y, bins=40, cmap='jet', cmin=1)
plt.colorbar()
Out[32]:
In [33]:
np.random.multivariate_normal?
In [56]:
mean = [0, 0]
cov = [[1, 30], [30, 1000]]
x, y = np.random.multivariate_normal(mean, cov, 50000).T
In [57]:
plt.hist2d(x, y, bins=100, cmap='jet', cmin=1)
plt.colorbar()
Out[57]:
In [ ]: