In [20]:
%matplotlib inline
In [21]:
import statsmodels.api as sm
import statsmodels.formula.api as smf
import pandas as pd
import seaborn as sns
import matplotlib as mpl
import matplotlib.pyplot as plt
In [22]:
bodyfat = pd.read_fwf('bodyfat.txt', names=['dietfat', 'bodyfat'])
fatmodel = smf.ols('bodyfat ~ dietfat', bodyfat)
fatresults = fatmodel.fit()
In [34]:
fatresults.summary()
Out[34]:
In [23]:
sm.qqplot(fatresults.resid, line='s')
Out[23]:
In [42]:
plt.plot(fatresults.resid, 'o')
Out[42]:
In [25]:
sns.lmplot('dietfat', 'bodyfat', bodyfat)
Out[25]:
In [29]:
# 2nd order polynomial
sns.lmplot('dietfat', 'bodyfat', bodyfat, order=2)
Out[29]:
In [31]:
# Residual plot
sns.residplot('dietfat', 'bodyfat', bodyfat)
Out[31]:
In [37]:
electric = pd.read_fwf('electric.txt', names=['bill', 'income', 'people', 'sqft'])
emodel = smf.ols('bill ~ income + people + sqft', electric)
eresults = emodel.fit()
In [38]:
eresults.summary()
Out[38]:
In [39]:
sns.corrplot(electric)
Out[39]:
In [ ]: