In [1]:
import pandas as pd

In [17]:
labels_df = pd.read_csv("D:\\p_eaglesense\\eaglesense\\data\\topviewkinect\\18\\labels.csv")

In [18]:
labels_df


Out[18]:
frame_id skeleton_id activity orientation orientation_accurate
0 173 0 -1 0.0 -1
1 174 0 -1 0.0 -1
2 175 0 -1 0.0 -1
3 176 0 -1 0.0 -1
4 177 0 -1 0.0 -1
5 178 0 -1 0.0 -1
6 179 0 -1 0.0 -1
7 180 0 -1 0.0 -1
8 181 0 -1 0.0 -1
9 182 0 -1 0.0 -1
10 183 0 -1 0.0 -1
11 184 0 -1 0.0 -1
12 185 0 -1 0.0 -1
13 186 0 -1 0.0 -1
14 187 0 -1 0.0 -1
15 188 0 -1 0.0 -1
16 189 0 -1 0.0 -1
17 190 0 -1 0.0 -1
18 191 0 -1 68.0 -1
19 192 0 -1 74.0 -1
20 193 0 -1 75.0 -1
21 194 0 -1 120.0 -1
22 195 0 -1 75.0 -1
23 196 0 -1 120.0 -1
24 197 0 -1 110.0 -1
25 198 0 -1 97.0 -1
26 199 0 -1 94.0 -1
27 200 0 -1 83.0 -1
28 201 0 -1 89.0 -1
29 202 0 -1 85.0 -1
... ... ... ... ... ...
2164 2105 0 -1 340.0 -1
2165 2106 0 -1 340.0 -1
2166 2107 0 -1 330.0 -1
2167 2108 0 -1 330.0 -1
2168 2109 0 -1 54.0 -1
2169 2110 0 -1 340.0 -1
2170 2111 0 -1 34.0 -1
2171 2112 0 -1 120.0 -1
2172 2113 0 -1 61.0 -1
2173 2114 0 -1 64.0 -1
2174 2115 0 -1 71.0 -1
2175 2116 0 -1 76.0 -1
2176 2117 0 -1 76.0 -1
2177 2118 0 -1 88.0 -1
2178 2119 0 -1 95.0 -1
2179 2120 0 -1 93.0 -1
2180 2121 0 -1 89.0 -1
2181 2122 0 -1 90.0 -1
2182 2123 0 -1 84.0 -1
2183 2124 0 -1 94.0 -1
2184 2125 0 -1 88.0 -1
2185 2126 0 -1 81.0 -1
2186 2127 0 -1 73.0 -1
2187 2128 0 -1 71.0 -1
2188 2129 0 -1 62.0 -1
2189 2130 0 -1 63.0 -1
2190 2131 0 -1 60.0 -1
2191 2132 0 -1 58.0 -1
2192 2133 0 -1 66.0 -1
2193 2134 0 -1 65.0 -1

2194 rows × 5 columns


In [19]:
labels_df.drop_duplicates(subset="frame_id", keep=False, inplace=True)

In [20]:
labels_df


Out[20]:
frame_id skeleton_id activity orientation orientation_accurate
0 173 0 -1 0.0 -1
1 174 0 -1 0.0 -1
2 175 0 -1 0.0 -1
3 176 0 -1 0.0 -1
4 177 0 -1 0.0 -1
5 178 0 -1 0.0 -1
6 179 0 -1 0.0 -1
7 180 0 -1 0.0 -1
8 181 0 -1 0.0 -1
9 182 0 -1 0.0 -1
10 183 0 -1 0.0 -1
11 184 0 -1 0.0 -1
12 185 0 -1 0.0 -1
13 186 0 -1 0.0 -1
14 187 0 -1 0.0 -1
15 188 0 -1 0.0 -1
16 189 0 -1 0.0 -1
17 190 0 -1 0.0 -1
18 191 0 -1 68.0 -1
19 192 0 -1 74.0 -1
20 193 0 -1 75.0 -1
21 194 0 -1 120.0 -1
22 195 0 -1 75.0 -1
23 196 0 -1 120.0 -1
24 197 0 -1 110.0 -1
25 198 0 -1 97.0 -1
26 199 0 -1 94.0 -1
27 200 0 -1 83.0 -1
28 201 0 -1 89.0 -1
29 202 0 -1 85.0 -1
... ... ... ... ... ...
2164 2105 0 -1 340.0 -1
2165 2106 0 -1 340.0 -1
2166 2107 0 -1 330.0 -1
2167 2108 0 -1 330.0 -1
2168 2109 0 -1 54.0 -1
2169 2110 0 -1 340.0 -1
2170 2111 0 -1 34.0 -1
2171 2112 0 -1 120.0 -1
2172 2113 0 -1 61.0 -1
2173 2114 0 -1 64.0 -1
2174 2115 0 -1 71.0 -1
2175 2116 0 -1 76.0 -1
2176 2117 0 -1 76.0 -1
2177 2118 0 -1 88.0 -1
2178 2119 0 -1 95.0 -1
2179 2120 0 -1 93.0 -1
2180 2121 0 -1 89.0 -1
2181 2122 0 -1 90.0 -1
2182 2123 0 -1 84.0 -1
2183 2124 0 -1 94.0 -1
2184 2125 0 -1 88.0 -1
2185 2126 0 -1 81.0 -1
2186 2127 0 -1 73.0 -1
2187 2128 0 -1 71.0 -1
2188 2129 0 -1 62.0 -1
2189 2130 0 -1 63.0 -1
2190 2131 0 -1 60.0 -1
2191 2132 0 -1 58.0 -1
2192 2133 0 -1 66.0 -1
2193 2134 0 -1 65.0 -1

1662 rows × 5 columns


In [24]:
labels_df.loc[labels_df['frame_id'] == 2134]


Out[24]:
frame_id skeleton_id activity orientation orientation_accurate
2193 2134 0 -1 65.0 -1

In [ ]:


In [25]:
labels_df.set_index("frame_id", inplace=True)

In [29]:
labels_df.loc[2134]


Out[29]:
skeleton_id              0.0
activity                -1.0
orientation             65.0
orientation_accurate    -1.0
Name: 2134, dtype: float64

In [ ]:


In [ ]:


In [5]:
labels_df


Out[5]:
skeleton_id activity orientation orientation_accurate
frame_id
173 0 -1 0.0 -1
174 0 -1 0.0 -1
175 0 -1 0.0 -1
176 0 -1 0.0 -1
177 0 -1 0.0 -1
178 0 -1 0.0 -1
179 0 -1 0.0 -1
180 0 -1 0.0 -1
181 0 -1 0.0 -1
182 0 -1 0.0 -1
183 0 -1 0.0 -1
184 0 -1 0.0 -1
185 0 -1 0.0 -1
186 0 -1 0.0 -1
187 0 -1 0.0 -1
188 0 -1 0.0 -1
189 0 -1 0.0 -1
190 0 -1 0.0 -1
191 0 -1 68.0 -1
192 0 -1 74.0 -1
193 0 -1 75.0 -1
194 0 -1 120.0 -1
195 0 -1 75.0 -1
196 0 -1 120.0 -1
197 0 -1 110.0 -1
198 0 -1 97.0 -1
199 0 -1 94.0 -1
200 0 -1 83.0 -1
201 0 -1 89.0 -1
202 0 -1 85.0 -1
... ... ... ... ...
2105 0 -1 340.0 -1
2106 0 -1 340.0 -1
2107 0 -1 330.0 -1
2108 0 -1 330.0 -1
2109 0 -1 54.0 -1
2110 0 -1 340.0 -1
2111 0 -1 34.0 -1
2112 0 -1 120.0 -1
2113 0 -1 61.0 -1
2114 0 -1 64.0 -1
2115 0 -1 71.0 -1
2116 0 -1 76.0 -1
2117 0 -1 76.0 -1
2118 0 -1 88.0 -1
2119 0 -1 95.0 -1
2120 0 -1 93.0 -1
2121 0 -1 89.0 -1
2122 0 -1 90.0 -1
2123 0 -1 84.0 -1
2124 0 -1 94.0 -1
2125 0 -1 88.0 -1
2126 0 -1 81.0 -1
2127 0 -1 73.0 -1
2128 0 -1 71.0 -1
2129 0 -1 62.0 -1
2130 0 -1 63.0 -1
2131 0 -1 60.0 -1
2132 0 -1 58.0 -1
2133 0 -1 66.0 -1
2134 0 -1 65.0 -1

2194 rows × 4 columns


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [6]:
labels_series = labels_df.loc[:, "activity"]

In [10]:
labels_series


Out[10]:
frame_id
173    -1
174    -1
175    -1
176    -1
177    -1
178    -1
179    -1
180    -1
181    -1
182    -1
183    -1
184    -1
185    -1
186    -1
187    -1
188    -1
189    -1
190    -1
191    -1
192    -1
193    -1
194    -1
195    -1
196    -1
197    -1
198    -1
199    -1
200    -1
201    -1
202    -1
       ..
2105   -1
2106   -1
2107   -1
2108   -1
2109   -1
2110   -1
2111   -1
2112   -1
2113   -1
2114   -1
2115   -1
2116   -1
2117   -1
2118   -1
2119   -1
2120   -1
2121   -1
2122   -1
2123   -1
2124   -1
2125   -1
2126   -1
2127   -1
2128   -1
2129   -1
2130   -1
2131   -1
2132   -1
2133   -1
2134   -1
Name: activity, Length: 2194, dtype: int64

In [16]:
labels_series.iloc[:1000]


Out[16]:
frame_id
173   -1
174   -1
175   -1
176   -1
177   -1
178   -1
179   -1
180   -1
181   -1
182   -1
183   -1
184   -1
185   -1
186   -1
187   -1
188   -1
189   -1
190   -1
191   -1
192   -1
193   -1
194   -1
195   -1
196   -1
197   -1
198   -1
199   -1
200   -1
201   -1
202   -1
      ..
913   -1
914   -1
915   -1
916   -1
917   -1
918   -1
919   -1
920   -1
921   -1
922   -1
923   -1
924   -1
925   -1
926   -1
927   -1
928   -1
929   -1
930   -1
931   -1
932   -1
933   -1
934   -1
935   -1
936   -1
937   -1
938   -1
939   -1
940   -1
941   -1
942   -1
Name: activity, Length: 1000, dtype: int64

In [ ]:


In [ ]:


In [ ]:


In [ ]: