The following items in auxi are discussed and demonstrated in this example:
auxi.tools.materialphysicalproperties.slags.UrbainViscosityTxauxi.tools.materialphysicalproperties.slags.UrbainViscosityTyauxi.tools.materialphysicalproperties.slags.RiboudViscosityTxauxi.tools.materialphysicalproperties.slags.RiboudViscosityTy
In [ ]:
from auxi.tools.materialphysicalproperties.slags import UrbainViscosityTx
# create an instance of the model
urbainTx = UrbainViscosityTx()
# define the material state
T = 1873.15 # [K]
x = {'SiO2': 0.25, 'P2O5': 0.25, 'CaO': 0.25, 'MgO':0.25} # [mole fraction]
# calculate the viscosity
mu = urbainTx(T=T, x=x)
print(urbainTx.symbol, mu, urbainTx.units)
In [ ]:
from auxi.tools.materialphysicalproperties.slags import UrbainViscosityTy
# create an instance of the model
urbainTy = UrbainViscosityTy()
# define the material state
T = 1873.15 # [K]
y = {'SiO2': 0.25, 'P2O5': 0.25, 'CaO': 0.25, 'MgO':0.25} # [mass fraction]
# calculate the viscosity
mu = urbainTy(T=T, y=y)
print(urbainTy.symbol, mu, urbainTy.units)
In [ ]:
from auxi.tools.materialphysicalproperties.slags import RiboudViscosityTx
# create an instance of the model
riboudTx = RiboudViscosityTx()
# define the material state
T = 1873.15 # [K]
x = {'SiO2': 0.25, 'P2O5': 0.25, 'CaO': 0.25, 'MgO':0.25} # [mole fraction]
# calculate the viscosity
mu = riboudTx(T=T, x=x)
print(riboudTx.symbol, mu, riboudTx.units)
In [ ]:
from auxi.tools.materialphysicalproperties.slags import RiboudViscosityTy
# create an instance of the model
riboudTy = RiboudViscosityTy()
# define the material state
T = 1873.15 # [K]
y = {'SiO2': 0.25, 'P2O5': 0.25, 'CaO': 0.25, 'MgO':0.25} # [mass fraction]
# calculate the viscosity
mu = riboudTy(T=T, y=y)
print(riboudTy.symbol, mu, riboudTy.units)
In [ ]:
# import an experimental dataset from auxi
from auxi.tools.materialphysicalproperties.slags import ds1
print(ds1)
Now let's use the data set to test the viscosity models.
In [ ]:
# create lists to contain the calculation results
measured = []
urbain = []
riboud = []
# calculate viscosities for the conditions in the data set
for index, row in ds1.data.iterrows():
T = row['T']
y = {'FeO': row['FeO'], 'P2O5': row['P2O5'], 'MnO': row['MnO'], 'SiO2': row['SiO2']}
measured.append(row['mu'])
urbain.append(urbainTy(T=T, y=y))
riboud.append(riboudTy(T=T, y=y))
# import matplotlib so that we can plot with it
import matplotlib.pyplot as plt
%matplotlib inline
# do the plot
plt.plot(measured, urbain, "bo", alpha=0.7, label='Urbain')
plt.plot(measured, riboud, "ro", alpha=0.7, label='Riboud')
plt.xlabel('Experimental $\mu$ [Pa.s]')
plt.ylabel('Model $\mu$ [Pa.s]')
plt.legend()
plt.show()