In [1]:
import numpy
from scipy.signal import correlate
import numpy as np
import matplotlib.pyplot as plt
plt.ion()
# Loads nicard and scope
manager.startModule('logic','cavitylogic')
import glob
In [2]:
filenames = glob.glob('./*.dat')
print(filenames)
fileNum=3
#cavitylogic._load_full_sweep(filepath='', filename=filenames[fileNum])
In [3]:
# Load datasets, taking mean of 100 values in each table row
A = numpy.loadtxt("2017-08-15_151553_full_sweep_data.dat")[1]
B = numpy.loadtxt("2017-08-15_151505_full_sweep_data.dat")[1]
A = np.split(A,2)[0][100000:]
B = np.split(B,2)[0][100000:]
In [4]:
low, high = 200000,300000
In [5]:
Atest = A
Btest = A
nsamples = Atest.size
Btest_sam = 0.05 * np.random.normal(size=(nsamples,))
time_shift = 26045
Atest = numpy.roll(Atest, time_shift)
Btest = Btest + Btest_sam
In [6]:
recovered_time_shift = cavitylogic.find_phase_difference(signal_a=Atest,signal_b=Btest,low=low,high=high,show=True)
In [7]:
print("Added time shift: {}".format(time_shift))
print("Recovered time shift: {}".format(recovered_time_shift))
In [8]:
plt.plot(Atest,'-',Btest,'-')
plt.show()
In [9]:
Btest = Btest - Btest_sam
Btest = numpy.roll(Btest, recovered_time_shift)
In [10]:
plt.plot(Atest,'-',Btest,'-')
plt.show()
In [ ]:
In [ ]: