In [10]:
x=9
y=6
z=y**x
print "z=", z
In [42]:
%pylab
In [54]:
import statsmodels.api as sm
import matplotlib.pyplot as plt
In [29]:
import pandas as pd
filename = 'namebench_2013-12-27_0205.csv'
data = pd.read_csv(filename, header=0,
names=[u'IP', u'Name', u'Test_Num', u'Record', u'Record_Type', u'Duration', u'TTL', u'Answer_Count', u'Response','Foo'])
data.shape, data.keys()
Out[29]:
In [30]:
data.head()
Out[30]:
In [37]:
opendns_durations=data.Duration[data.Name=='OpenDNS']
google_durations=data.Duration[data.Name=='Google Public DNS']
In [39]:
set(data.Name)
Out[39]:
In [40]:
google_durations.shape
Out[40]:
In [46]:
clf()
hist(google_durations,bins=20)
Out[46]:
In [47]:
figure(2)
hist(opendns_durations,bins=20)
Out[47]:
In [58]:
fig=figure(3)
clf()
ecdf = sm.distributions.ECDF(google_durations)
x = np.linspace(min(google_durations),max(google_durations))
y = ecdf(x)
ax = fig.add_subplot(111)
ax.set_ylabel('%')
ax.set_xlabel('ms')
ax.step(x,y)
plt.show()
In [51]:
ecdf
Out[51]:
In [ ]: