--------------- try_C: 0.010, try_alpha: 0.010 ---------------
mean_Tau: 0.633
--------------- try_C: 0.010, try_alpha: 0.100 ---------------
mean_Tau: 0.592
--------------- try_C: 0.010, try_alpha: 0.300 ---------------
mean_Tau: 0.619
--------------- try_C: 0.010, try_alpha: 0.500 ---------------
mean_Tau: 0.611
--------------- try_C: 0.010, try_alpha: 0.700 ---------------
mean_Tau: 0.577
--------------- try_C: 0.010, try_alpha: 0.900 ---------------
mean_Tau: 0.585
--------------- try_C: 0.010, try_alpha: 0.990 ---------------
mean_Tau: 0.568
--------------- try_C: 0.030, try_alpha: 0.010 ---------------
mean_Tau: 0.569
--------------- try_C: 0.030, try_alpha: 0.100 ---------------
mean_Tau: 0.688
--------------- try_C: 0.030, try_alpha: 0.300 ---------------
mean_Tau: 0.615
--------------- try_C: 0.030, try_alpha: 0.500 ---------------
mean_Tau: 0.661
--------------- try_C: 0.030, try_alpha: 0.700 ---------------
mean_Tau: 0.641
--------------- try_C: 0.030, try_alpha: 0.900 ---------------
mean_Tau: 0.588
--------------- try_C: 0.030, try_alpha: 0.990 ---------------
mean_Tau: 0.534
--------------- try_C: 0.100, try_alpha: 0.010 ---------------
mean_Tau: 0.523
--------------- try_C: 0.100, try_alpha: 0.100 ---------------
mean_Tau: 0.681
--------------- try_C: 0.100, try_alpha: 0.300 ---------------
mean_Tau: 0.605
--------------- try_C: 0.100, try_alpha: 0.500 ---------------
mean_Tau: 0.631
--------------- try_C: 0.100, try_alpha: 0.700 ---------------
mean_Tau: 0.609
--------------- try_C: 0.100, try_alpha: 0.900 ---------------
mean_Tau: 0.645
--------------- try_C: 0.100, try_alpha: 0.990 ---------------
mean_Tau: 0.605
--------------- try_C: 0.300, try_alpha: 0.010 ---------------
mean_Tau: 0.668
--------------- try_C: 0.300, try_alpha: 0.100 ---------------
mean_Tau: 0.624
--------------- try_C: 0.300, try_alpha: 0.300 ---------------
mean_Tau: 0.483
--------------- try_C: 0.300, try_alpha: 0.500 ---------------
mean_Tau: 0.695
--------------- try_C: 0.300, try_alpha: 0.700 ---------------
mean_Tau: 0.624
--------------- try_C: 0.300, try_alpha: 0.900 ---------------
mean_Tau: 0.639
--------------- try_C: 0.300, try_alpha: 0.990 ---------------
mean_Tau: 0.585
--------------- try_C: 1.000, try_alpha: 0.010 ---------------
mean_Tau: 0.614
--------------- try_C: 1.000, try_alpha: 0.100 ---------------
mean_Tau: 0.603
--------------- try_C: 1.000, try_alpha: 0.300 ---------------
mean_Tau: 0.728
--------------- try_C: 1.000, try_alpha: 0.500 ---------------
mean_Tau: 0.668
--------------- try_C: 1.000, try_alpha: 0.700 ---------------
mean_Tau: 0.672
--------------- try_C: 1.000, try_alpha: 0.900 ---------------
mean_Tau: 0.627
--------------- try_C: 1.000, try_alpha: 0.990 ---------------
mean_Tau: 0.755
--------------- try_C: 3.000, try_alpha: 0.010 ---------------
mean_Tau: 0.571
--------------- try_C: 3.000, try_alpha: 0.100 ---------------
mean_Tau: 0.640
--------------- try_C: 3.000, try_alpha: 0.300 ---------------
mean_Tau: 0.671
--------------- try_C: 3.000, try_alpha: 0.500 ---------------
mean_Tau: 0.712
--------------- try_C: 3.000, try_alpha: 0.700 ---------------
mean_Tau: 0.655
--------------- try_C: 3.000, try_alpha: 0.900 ---------------
mean_Tau: 0.531
--------------- try_C: 3.000, try_alpha: 0.990 ---------------
mean_Tau: 0.608
--------------- try_C: 10.000, try_alpha: 0.010 ---------------
mean_Tau: 0.713
--------------- try_C: 10.000, try_alpha: 0.100 ---------------
mean_Tau: 0.633
--------------- try_C: 10.000, try_alpha: 0.300 ---------------
mean_Tau: 0.634
--------------- try_C: 10.000, try_alpha: 0.500 ---------------
mean_Tau: 0.619
--------------- try_C: 10.000, try_alpha: 0.700 ---------------
mean_Tau: 0.508
--------------- try_C: 10.000, try_alpha: 0.900 ---------------
mean_Tau: 0.632
--------------- try_C: 10.000, try_alpha: 0.990 ---------------
mean_Tau: 0.551
--------------- try_C: 30.000, try_alpha: 0.010 ---------------
mean_Tau: 0.533
--------------- try_C: 30.000, try_alpha: 0.100 ---------------
mean_Tau: 0.678
--------------- try_C: 30.000, try_alpha: 0.300 ---------------
mean_Tau: 0.675
--------------- try_C: 30.000, try_alpha: 0.500 ---------------
mean_Tau: 0.644
--------------- try_C: 30.000, try_alpha: 0.700 ---------------
mean_Tau: 0.643
--------------- try_C: 30.000, try_alpha: 0.900 ---------------
mean_Tau: 0.621
--------------- try_C: 30.000, try_alpha: 0.990 ---------------
mean_Tau: 0.535
--------------- try_C: 100.000, try_alpha: 0.010 ---------------
mean_Tau: 0.576
--------------- try_C: 100.000, try_alpha: 0.100 ---------------
mean_Tau: 0.669
--------------- try_C: 100.000, try_alpha: 0.300 ---------------
mean_Tau: 0.621
--------------- try_C: 100.000, try_alpha: 0.500 ---------------
mean_Tau: 0.635
--------------- try_C: 100.000, try_alpha: 0.700 ---------------
mean_Tau: 0.619
--------------- try_C: 100.000, try_alpha: 0.900 ---------------
mean_Tau: 0.650
--------------- try_C: 100.000, try_alpha: 0.990 ---------------
mean_Tau: 0.664
--------------- try_C: 300.000, try_alpha: 0.010 ---------------
mean_Tau: 0.574
--------------- try_C: 300.000, try_alpha: 0.100 ---------------
mean_Tau: 0.525
--------------- try_C: 300.000, try_alpha: 0.300 ---------------
mean_Tau: 0.667
--------------- try_C: 300.000, try_alpha: 0.500 ---------------
mean_Tau: 0.591
--------------- try_C: 300.000, try_alpha: 0.700 ---------------
mean_Tau: 0.729
--------------- try_C: 300.000, try_alpha: 0.900 ---------------
mean_Tau: 0.626
--------------- try_C: 300.000, try_alpha: 0.990 ---------------
mean_Tau: 0.601
--------------- try_C: 1000.000, try_alpha: 0.010 ---------------
mean_Tau: 0.737
--------------- try_C: 1000.000, try_alpha: 0.100 ---------------
mean_Tau: 0.699
--------------- try_C: 1000.000, try_alpha: 0.300 ---------------
mean_Tau: 0.598
--------------- try_C: 1000.000, try_alpha: 0.500 ---------------
mean_Tau: 0.528
--------------- try_C: 1000.000, try_alpha: 0.700 ---------------
mean_Tau: 0.585
--------------- try_C: 1000.000, try_alpha: 0.900 ---------------
mean_Tau: 0.564
--------------- try_C: 1000.000, try_alpha: 0.990 ---------------
mean_Tau: 0.541
--------------- try_C: 3000.000, try_alpha: 0.010 ---------------
mean_Tau: 0.645
--------------- try_C: 3000.000, try_alpha: 0.100 ---------------
mean_Tau: 0.707
--------------- try_C: 3000.000, try_alpha: 0.300 ---------------
mean_Tau: 0.599
--------------- try_C: 3000.000, try_alpha: 0.500 ---------------
mean_Tau: 0.631
--------------- try_C: 3000.000, try_alpha: 0.700 ---------------
mean_Tau: 0.699
--------------- try_C: 3000.000, try_alpha: 0.900 ---------------
mean_Tau: 0.554
--------------- try_C: 3000.000, try_alpha: 0.990 ---------------
mean_Tau: 0.656
--------------- 1/47, Query: (1, 2), Best_C: 1.000, Best_alpha: 0.990 ---------------
--------------- try_C: 0.010, try_alpha: 0.010 ---------------
mean_Tau: 0.626
--------------- try_C: 0.010, try_alpha: 0.100 ---------------
mean_Tau: 0.707
--------------- try_C: 0.010, try_alpha: 0.300 ---------------
mean_Tau: 0.561
--------------- try_C: 0.010, try_alpha: 0.500 ---------------
mean_Tau: 0.576
--------------- try_C: 0.010, try_alpha: 0.700 ---------------
mean_Tau: 0.672
--------------- try_C: 0.010, try_alpha: 0.900 ---------------
mean_Tau: 0.625
--------------- try_C: 0.010, try_alpha: 0.990 ---------------
mean_Tau: 0.605
--------------- try_C: 0.030, try_alpha: 0.010 ---------------
mean_Tau: 0.625
--------------- try_C: 0.030, try_alpha: 0.100 ---------------
mean_Tau: 0.615
--------------- try_C: 0.030, try_alpha: 0.300 ---------------
mean_Tau: 0.572
--------------- try_C: 0.030, try_alpha: 0.500 ---------------
mean_Tau: 0.680
--------------- try_C: 0.030, try_alpha: 0.700 ---------------
mean_Tau: 0.752
--------------- try_C: 0.030, try_alpha: 0.900 ---------------
mean_Tau: 0.501
--------------- try_C: 0.030, try_alpha: 0.990 ---------------
mean_Tau: 0.669
--------------- try_C: 0.100, try_alpha: 0.010 ---------------
mean_Tau: 0.608
--------------- try_C: 0.100, try_alpha: 0.100 ---------------
mean_Tau: 0.704
--------------- try_C: 0.100, try_alpha: 0.300 ---------------
mean_Tau: 0.590
--------------- try_C: 0.100, try_alpha: 0.500 ---------------
mean_Tau: 0.726
--------------- try_C: 0.100, try_alpha: 0.700 ---------------
mean_Tau: 0.722
--------------- try_C: 0.100, try_alpha: 0.900 ---------------
mean_Tau: 0.621
--------------- try_C: 0.100, try_alpha: 0.990 ---------------
mean_Tau: 0.594
--------------- try_C: 0.300, try_alpha: 0.010 ---------------
mean_Tau: 0.656
--------------- try_C: 0.300, try_alpha: 0.100 ---------------
mean_Tau: 0.593
--------------- try_C: 0.300, try_alpha: 0.300 ---------------
mean_Tau: 0.601
--------------- try_C: 0.300, try_alpha: 0.500 ---------------
mean_Tau: 0.752
--------------- try_C: 0.300, try_alpha: 0.700 ---------------
mean_Tau: 0.608
--------------- try_C: 0.300, try_alpha: 0.900 ---------------
mean_Tau: 0.678
--------------- try_C: 0.300, try_alpha: 0.990 ---------------
mean_Tau: 0.605
--------------- try_C: 1.000, try_alpha: 0.010 ---------------
mean_Tau: 0.564
--------------- try_C: 1.000, try_alpha: 0.100 ---------------
mean_Tau: 0.571
--------------- try_C: 1.000, try_alpha: 0.300 ---------------
mean_Tau: 0.668
--------------- try_C: 1.000, try_alpha: 0.500 ---------------
mean_Tau: 0.611
--------------- try_C: 1.000, try_alpha: 0.700 ---------------
mean_Tau: 0.627
--------------- try_C: 1.000, try_alpha: 0.900 ---------------
mean_Tau: 0.618
--------------- try_C: 1.000, try_alpha: 0.990 ---------------
mean_Tau: 0.637
--------------- try_C: 3.000, try_alpha: 0.010 ---------------
mean_Tau: 0.812
--------------- try_C: 3.000, try_alpha: 0.100 ---------------
mean_Tau: 0.506
--------------- try_C: 3.000, try_alpha: 0.300 ---------------
mean_Tau: 0.541
--------------- try_C: 3.000, try_alpha: 0.500 ---------------
mean_Tau: 0.690
--------------- try_C: 3.000, try_alpha: 0.700 ---------------
mean_Tau: 0.683
--------------- try_C: 3.000, try_alpha: 0.900 ---------------
mean_Tau: 0.684
--------------- try_C: 3.000, try_alpha: 0.990 ---------------
mean_Tau: 0.717
--------------- try_C: 10.000, try_alpha: 0.010 ---------------
mean_Tau: 0.666
--------------- try_C: 10.000, try_alpha: 0.100 ---------------
mean_Tau: 0.628
--------------- try_C: 10.000, try_alpha: 0.300 ---------------
mean_Tau: 0.608
--------------- try_C: 10.000, try_alpha: 0.500 ---------------
mean_Tau: 0.596
--------------- try_C: 10.000, try_alpha: 0.700 ---------------
mean_Tau: 0.686
--------------- try_C: 10.000, try_alpha: 0.900 ---------------
mean_Tau: 0.672
--------------- try_C: 10.000, try_alpha: 0.990 ---------------
mean_Tau: 0.592
--------------- try_C: 30.000, try_alpha: 0.010 ---------------
mean_Tau: 0.602
--------------- try_C: 30.000, try_alpha: 0.100 ---------------
mean_Tau: 0.644
--------------- try_C: 30.000, try_alpha: 0.300 ---------------
mean_Tau: 0.668
--------------- try_C: 30.000, try_alpha: 0.500 ---------------
mean_Tau: 0.607
--------------- try_C: 30.000, try_alpha: 0.700 ---------------
mean_Tau: 0.661
--------------- try_C: 30.000, try_alpha: 0.900 ---------------
mean_Tau: 0.631
--------------- try_C: 30.000, try_alpha: 0.990 ---------------
mean_Tau: 0.635
--------------- try_C: 100.000, try_alpha: 0.010 ---------------
mean_Tau: 0.611
--------------- try_C: 100.000, try_alpha: 0.100 ---------------
mean_Tau: 0.615
--------------- try_C: 100.000, try_alpha: 0.300 ---------------
mean_Tau: 0.669
--------------- try_C: 100.000, try_alpha: 0.500 ---------------
mean_Tau: 0.657
--------------- try_C: 100.000, try_alpha: 0.700 ---------------
mean_Tau: 0.729
--------------- try_C: 100.000, try_alpha: 0.900 ---------------
mean_Tau: 0.638
--------------- try_C: 100.000, try_alpha: 0.990 ---------------
mean_Tau: 0.624
--------------- try_C: 300.000, try_alpha: 0.010 ---------------
mean_Tau: 0.627
--------------- try_C: 300.000, try_alpha: 0.100 ---------------
mean_Tau: 0.526
--------------- try_C: 300.000, try_alpha: 0.300 ---------------
mean_Tau: 0.683
--------------- try_C: 300.000, try_alpha: 0.500 ---------------
mean_Tau: 0.778
--------------- try_C: 300.000, try_alpha: 0.700 ---------------
mean_Tau: 0.648
--------------- try_C: 300.000, try_alpha: 0.900 ---------------
mean_Tau: 0.557
--------------- try_C: 300.000, try_alpha: 0.990 ---------------
mean_Tau: 0.682
--------------- try_C: 1000.000, try_alpha: 0.010 ---------------
mean_Tau: 0.595
--------------- try_C: 1000.000, try_alpha: 0.100 ---------------
mean_Tau: 0.658
--------------- try_C: 1000.000, try_alpha: 0.300 ---------------
mean_Tau: 0.602
--------------- try_C: 1000.000, try_alpha: 0.500 ---------------
mean_Tau: 0.722
--------------- try_C: 1000.000, try_alpha: 0.700 ---------------
mean_Tau: 0.555
--------------- try_C: 1000.000, try_alpha: 0.900 ---------------
mean_Tau: 0.575
--------------- try_C: 1000.000, try_alpha: 0.990 ---------------
mean_Tau: 0.635
--------------- try_C: 3000.000, try_alpha: 0.010 ---------------
mean_Tau: 0.523
--------------- try_C: 3000.000, try_alpha: 0.100 ---------------
mean_Tau: 0.651
--------------- try_C: 3000.000, try_alpha: 0.300 ---------------
mean_Tau: 0.706
--------------- try_C: 3000.000, try_alpha: 0.500 ---------------
mean_Tau: 0.674
--------------- try_C: 3000.000, try_alpha: 0.700 ---------------
mean_Tau: 0.556
--------------- try_C: 3000.000, try_alpha: 0.900 ---------------
mean_Tau: 0.571
--------------- try_C: 3000.000, try_alpha: 0.990 ---------------
mean_Tau: 0.685
--------------- 2/47, Query: (1, 3), Best_C: 3.000, Best_alpha: 0.010 ---------------
--------------- try_C: 0.010, try_alpha: 0.010 ---------------
mean_Tau: 0.594
--------------- try_C: 0.010, try_alpha: 0.100 ---------------
mean_Tau: 0.633
--------------- try_C: 0.010, try_alpha: 0.300 ---------------
mean_Tau: 0.744
--------------- try_C: 0.010, try_alpha: 0.500 ---------------
mean_Tau: 0.731
--------------- try_C: 0.010, try_alpha: 0.700 ---------------
mean_Tau: 0.553
--------------- try_C: 0.010, try_alpha: 0.900 ---------------
mean_Tau: 0.623
--------------- try_C: 0.010, try_alpha: 0.990 ---------------
mean_Tau: 0.627
--------------- try_C: 0.030, try_alpha: 0.010 ---------------
mean_Tau: 0.592
--------------- try_C: 0.030, try_alpha: 0.100 ---------------
mean_Tau: 0.573
--------------- try_C: 0.030, try_alpha: 0.300 ---------------
mean_Tau: 0.651
--------------- try_C: 0.030, try_alpha: 0.500 ---------------
mean_Tau: 0.624
--------------- try_C: 0.030, try_alpha: 0.700 ---------------
mean_Tau: 0.588
--------------- try_C: 0.030, try_alpha: 0.900 ---------------
mean_Tau: 0.615
--------------- try_C: 0.030, try_alpha: 0.990 ---------------
mean_Tau: 0.714
--------------- try_C: 0.100, try_alpha: 0.010 ---------------
mean_Tau: 0.658
--------------- try_C: 0.100, try_alpha: 0.100 ---------------
mean_Tau: 0.739
--------------- try_C: 0.100, try_alpha: 0.300 ---------------
mean_Tau: 0.661
--------------- try_C: 0.100, try_alpha: 0.500 ---------------
mean_Tau: 0.701
--------------- try_C: 0.100, try_alpha: 0.700 ---------------
mean_Tau: 0.575
--------------- try_C: 0.100, try_alpha: 0.900 ---------------
mean_Tau: 0.530
--------------- try_C: 0.100, try_alpha: 0.990 ---------------
mean_Tau: 0.627
--------------- try_C: 0.300, try_alpha: 0.010 ---------------
mean_Tau: 0.690
--------------- try_C: 0.300, try_alpha: 0.100 ---------------
mean_Tau: 0.578
--------------- try_C: 0.300, try_alpha: 0.300 ---------------
mean_Tau: 0.652
--------------- try_C: 0.300, try_alpha: 0.500 ---------------
mean_Tau: 0.745
--------------- try_C: 0.300, try_alpha: 0.700 ---------------
mean_Tau: 0.620
--------------- try_C: 0.300, try_alpha: 0.900 ---------------
mean_Tau: 0.739
--------------- try_C: 0.300, try_alpha: 0.990 ---------------
mean_Tau: 0.692
--------------- try_C: 1.000, try_alpha: 0.010 ---------------
mean_Tau: 0.597
--------------- try_C: 1.000, try_alpha: 0.100 ---------------
mean_Tau: 0.605
--------------- try_C: 1.000, try_alpha: 0.300 ---------------
mean_Tau: 0.516
--------------- try_C: 1.000, try_alpha: 0.500 ---------------
mean_Tau: 0.645
--------------- try_C: 1.000, try_alpha: 0.700 ---------------
mean_Tau: 0.563
--------------- try_C: 1.000, try_alpha: 0.900 ---------------
mean_Tau: 0.688
--------------- try_C: 1.000, try_alpha: 0.990 ---------------
mean_Tau: 0.555
--------------- try_C: 3.000, try_alpha: 0.010 ---------------
mean_Tau: 0.625
--------------- try_C: 3.000, try_alpha: 0.100 ---------------
mean_Tau: 0.563
--------------- try_C: 3.000, try_alpha: 0.300 ---------------
mean_Tau: 0.552
--------------- try_C: 3.000, try_alpha: 0.500 ---------------
mean_Tau: 0.596
--------------- try_C: 3.000, try_alpha: 0.700 ---------------
mean_Tau: 0.646
--------------- try_C: 3.000, try_alpha: 0.900 ---------------
mean_Tau: 0.568
--------------- try_C: 3.000, try_alpha: 0.990 ---------------
mean_Tau: 0.558
--------------- try_C: 10.000, try_alpha: 0.010 ---------------
mean_Tau: 0.604
--------------- try_C: 10.000, try_alpha: 0.100 ---------------
mean_Tau: 0.571
--------------- try_C: 10.000, try_alpha: 0.300 ---------------
mean_Tau: 0.604
--------------- try_C: 10.000, try_alpha: 0.500 ---------------
mean_Tau: 0.675
--------------- try_C: 10.000, try_alpha: 0.700 ---------------
mean_Tau: 0.607
--------------- try_C: 10.000, try_alpha: 0.900 ---------------
mean_Tau: 0.680
--------------- try_C: 10.000, try_alpha: 0.990 ---------------
mean_Tau: 0.598
--------------- try_C: 30.000, try_alpha: 0.010 ---------------
mean_Tau: 0.572
--------------- try_C: 30.000, try_alpha: 0.100 ---------------
mean_Tau: 0.650
--------------- try_C: 30.000, try_alpha: 0.300 ---------------
mean_Tau: 0.595
--------------- try_C: 30.000, try_alpha: 0.500 ---------------
mean_Tau: 0.678
--------------- try_C: 30.000, try_alpha: 0.700 ---------------
mean_Tau: 0.638
--------------- try_C: 30.000, try_alpha: 0.900 ---------------
mean_Tau: 0.602
--------------- try_C: 30.000, try_alpha: 0.990 ---------------
mean_Tau: 0.574
--------------- try_C: 100.000, try_alpha: 0.010 ---------------
mean_Tau: 0.726
--------------- try_C: 100.000, try_alpha: 0.100 ---------------
mean_Tau: 0.571
--------------- try_C: 100.000, try_alpha: 0.300 ---------------
mean_Tau: 0.630
--------------- try_C: 100.000, try_alpha: 0.500 ---------------
mean_Tau: 0.576
--------------- try_C: 100.000, try_alpha: 0.700 ---------------
mean_Tau: 0.613
--------------- try_C: 100.000, try_alpha: 0.900 ---------------
mean_Tau: 0.587
--------------- try_C: 100.000, try_alpha: 0.990 ---------------
mean_Tau: 0.664
--------------- try_C: 300.000, try_alpha: 0.010 ---------------
mean_Tau: 0.608
--------------- try_C: 300.000, try_alpha: 0.100 ---------------
mean_Tau: 0.636
--------------- try_C: 300.000, try_alpha: 0.300 ---------------
mean_Tau: 0.535
--------------- try_C: 300.000, try_alpha: 0.500 ---------------
mean_Tau: 0.657
--------------- try_C: 300.000, try_alpha: 0.700 ---------------
mean_Tau: 0.622
--------------- try_C: 300.000, try_alpha: 0.900 ---------------
mean_Tau: 0.554
--------------- try_C: 300.000, try_alpha: 0.990 ---------------
mean_Tau: 0.624
--------------- try_C: 1000.000, try_alpha: 0.010 ---------------
mean_Tau: 0.624
--------------- try_C: 1000.000, try_alpha: 0.100 ---------------
mean_Tau: 0.532
--------------- try_C: 1000.000, try_alpha: 0.300 ---------------
mean_Tau: 0.569
--------------- try_C: 1000.000, try_alpha: 0.500 ---------------
mean_Tau: 0.529
--------------- try_C: 1000.000, try_alpha: 0.700 ---------------
mean_Tau: 0.689
--------------- try_C: 1000.000, try_alpha: 0.900 ---------------
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-16-e90ee5e2f68e> in <module>()
62 nodes['weight'] = np.log10(nodes['probability'])
63
---> 64 y_hat = inference_fun(nodes, edges.copy(), ps_cv, L_cv, withNodeWeight=True, alpha=alpha)
65 F1, pF1, tau = evaluate(dat_obj, keys_cv[j], [y_hat])
66 F1_list.append(F1); pF1_list.append(pF1); Tau_list.append(tau)
<ipython-input-15-9877eac079a5> in find_ILP(V, E, ps, L, withNodeWeight, alpha)
54 pb.solve(pulp.GUROBI_CMD(path='gurobi_cl', options=gurobi_options)) # GUROBI
55 else:
---> 56 pb.solve(pulp.COIN_CMD(path='cbc', options=['-threads', str(N_JOBS), '-strategy', '1', '-maxIt', '2000000']))#CBC
57 visit_mat = pd.DataFrame(data=np.zeros((len(pois), len(pois)), dtype=np.float), index=pois, columns=pois)
58 isend_vec = pd.Series(data=np.zeros(len(pois), dtype=np.float), index=pois)
/home/dawei/apps/miniconda3/lib/python3.5/site-packages/pulp/pulp.py in solve(self, solver, **kwargs)
1641 #time it
1642 self.solutionTime = -clock()
-> 1643 status = solver.actualSolve(self, **kwargs)
1644 self.solutionTime += clock()
1645 self.restoreObjective(wasNone, dummyVar)
/home/dawei/apps/miniconda3/lib/python3.5/site-packages/pulp/solvers.py in actualSolve(self, lp, **kwargs)
1301 def actualSolve(self, lp, **kwargs):
1302 """Solve a well formulated lp problem"""
-> 1303 return self.solve_CBC(lp, **kwargs)
1304
1305 def available(self):
/home/dawei/apps/miniconda3/lib/python3.5/site-packages/pulp/solvers.py in solve_CBC(self, lp, use_mps)
1360 cbc = subprocess.Popen((self.path + cmds).split(), stdout = pipe,
1361 stderr = pipe)
-> 1362 if cbc.wait() != 0:
1363 raise PulpSolverError("Pulp: Error while trying to execute " + \
1364 self.path)
/home/dawei/apps/miniconda3/lib/python3.5/subprocess.py in wait(self, timeout, endtime)
1656 if self.returncode is not None:
1657 break # Another thread waited.
-> 1658 (pid, sts) = self._try_wait(0)
1659 # Check the pid and loop as waitpid has been known to
1660 # return 0 even without WNOHANG in odd situations.
/home/dawei/apps/miniconda3/lib/python3.5/subprocess.py in _try_wait(self, wait_flags)
1606 """All callers to this function MUST hold self._waitpid_lock."""
1607 try:
-> 1608 (pid, sts) = os.waitpid(self.pid, wait_flags)
1609 except ChildProcessError:
1610 # This happens if SIGCLD is set to be ignored or waiting
KeyboardInterrupt: