In [1]:
import glob
import numpy as np
import pandas as pd
from grafting_classifier import GraftingClassifier
from sklearn.linear_model import SGDClassifier
from ogfs_classifier import OGFSClassifier
from osfs_classifier import OSFSClassifier
from dpp_classifier import DPPClassifier
from dpp_classifier_mitra import DPPClassifier as DPPClassifier2
from dpp_classifier_ogfs import DPPClassifier as DPPClassifier3
from sklearn.metrics import log_loss, accuracy_score
#import dask.dataframe as dd
#import dask.array as da
In [2]:
class_train = glob.glob("microarray/*_train.csv")
print(class_train)
In [3]:
def train_label(fname):
targetname = fname.replace(".csv", ".labels")
return pd.read_csv(targetname)
In [16]:
def get_performance(mod, fpath, base=False):
train1 = pd.read_csv(fpath).fillna(0)
y = np.array(train_label(fpath)).flatten()
# simulate streaming...
# try splitting into groups of ~10,
# if there is no splits, try ~5.
train1_cols = np.array_split(range(train1.shape[1]), int(train1.shape[1]/10.0) + 1)
if len(train1_cols) == 1:
train1_cols = np.array_split(range(train1.shape[1]), int(train1.shape[1]/5.0) + 1)
all_cols = []
#mod = GraftingClassifier(max_iter=5)
if base:
mod.fit(train1, y)
results = {'accuracy': accuracy_score(y, mod.predict(train1)),
'logloss': log_loss(y, mod.predict_proba(train1)),
'feat_dim': mod.coef_.flatten().shape}
return results
for idx, collist in enumerate(train1_cols):
if idx == 0:
column_list = list(np.array(list(train1.columns))[collist])
mod.fit(train1[column_list], y)
all_cols.extend(list(collist))
else:
all_cols.extend(list(collist))
column_list = list(np.array(list(train1.columns))[all_cols])
mod.partial_fit(train1[column_list], y)
results = {'accuracy': accuracy_score(y, mod.predict(train1)),
'logloss': log_loss(y, mod.predict_proba(train1)),
'feat_dim': mod.coef_.flatten().shape}
return results
In [39]:
mod = OSFSClassifier(max_iter=5, random_state=42)
In [40]:
fpath = class_train[0]
In [41]:
train1 = pd.read_csv(fpath).fillna(0)
y = np.array(train_label(fpath)).flatten()
In [42]:
train1 = (train1 - train1.mean())/(np.maximum(train1.std(), 1))
In [43]:
train1_cols = np.array_split(range(train1.shape[1]), int(train1.shape[1]/10.0) + 1)
if len(train1_cols) == 1:
train1_cols = np.array_split(range(train1.shape[1]), int(train1.shape[1]/5.0) + 1)
all_cols = []
In [44]:
for idx, collist in enumerate(train1_cols):
if idx == 0:
column_list = list(np.array(list(train1.columns))[collist])
mod.fit(train1[column_list], y)
all_cols.extend(list(collist))
else:
all_cols.extend(list(collist))
column_list = list(np.array(list(train1.columns))[all_cols])
mod.partial_fit(train1[column_list], y)
if idx % 10 == 0:
results = {'accuracy': accuracy_score(y, mod.predict(train1[column_list])),
'logloss': log_loss(y, mod.predict_proba(train1[column_list])),
'feat_dim': mod.coef_.flatten().shape}
print(idx, results)
In [45]:
len(mod.coef_info['strong_dep'])
Out[45]:
In [46]:
len(mod.coef_info['weak_dep'])
Out[46]:
In [47]:
len(mod.coef_info['cols'])
Out[47]:
In [48]:
len(mod.coef_info['excluded_cols'])
Out[48]:
In [49]:
mod.coef_.shape
Out[49]:
In [ ]: