In [1]:
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import label_binarize
from sklearn.metrics import confusion_matrix
%matplotlib inline
dir = '/Users/chanjinpark/GitHub/NRFAnalysis/data/temp/'
df = pd.read_csv(dir + 'metrics-confusionmatrix.csv', encoding="utf-8")
In [2]:
import matplotlib
matplotlib.rc('font', family='AppleGothic')
def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
plt.figure(figsize=(12, 12))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(cm.columns))
plt.xticks(tick_marks, cm.columns, rotation=45)
plt.yticks(tick_marks, cm.index)
# plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
plt.savefig('cm1.png', dpi=100)
plot_confusion_matrix(df)
plt.figure()
Out[2]:
In [3]:
df_normalized = (df - df.mean()) / df.std()
plot_confusion_matrix(df_normalized)
plt.figure()
Out[3]:
In [8]:
In [ ]: