In [1]:
import tensorflow as tf
x=tf.constant([1.5, 2.8, 3.9, 4.1, 5.0, 6])
y=tf.constant([1.2, 1.1, 3.4, 8.5, 4, 3.1])
with tf.Session() as sess:
for i in range(len(sess.run(x))):
output = sess.run(x[i])
print(output)
with tf.Session() as sess1:
for i in range(len(sess1.run(y))):
output1 = sess1.run(y[i])
print(output1)
In [2]:
sum1=tf.constant(0)
with tf.Session() as sess:
for i in range(len(sess.run(x))):
output =sess.run(x[i])
sum1=tf.add(sum1,output)
a=tf.divide(sum1,len(sess.run(x)))
avgx=sess.run(a)
print(avgx)
sum1=tf.constant(0)
with tf.Session() as sess:
for i in range(len(sess.run(y))):
output =sess.run(y[i])
sum1=tf.add(sum1,output)
a=tf.divide(sum1,len(sess.run(y)))
avgy=sess.run(a)
print(avgy)
In [3]:
#Calculate variance for x
var=tf.constant(0.0)
with tf.Session() as sess:
for i in range(len(sess.run(x))):
a=tf.subtract(sess.run(x[i]),avgx)
b=tf.square(a)
var=tf.add(var,b)
vari=sess.run(var)
print(vari)
In [4]:
#Calculate covariance of x & y
cov=tf.constant(0.0)
with tf.Session() as sess:
for i in range(len(sess.run(x))):
a=tf.subtract(sess.run(x[i]),avgx)
b=tf.subtract(sess.run(y[i]),avgy)
c=tf.multiply(a,b)
cov=tf.add(cov,c)
covar=sess.run(cov)
print(covar)
In [5]:
#Calculate value of c
temp=tf.divide(cov,var)
with tf.Session() as sess:
const_c=sess.run(temp)
print(const_c)
In [6]:
#Calculate value of m
c=tf.to_float(const_c)
d=tf.to_float(avgx)
e=tf.multiply(c,d)
f=tf.to_float(avgy)
res=tf.subtract(f,e)
with tf.Session() as sess:
res=sess.run(f)
print('The value of m')
print(res)
In [7]:
#with scope 2
import tensorflow as tf
v1=tf.constant(4)
v2=tf.constant(2)
with tf.name_scope("MyOperationGroup"):
with tf.name_scope("Scope_A"):
a = tf.multiply(v1,v1)
b = tf.multiply(v2,v2)
with tf.name_scope("Scope_B"):
c = tf.add(a, b, name="And_These_ones")
d = tf.multiply(v1, v2, name="Multiply_these_numbers")
with tf.name_scope("Scope_C"):
e=tf.subtract(c,d, name="subtrating")
#e = tf.multiply(2, d, name="B_add")
f=tf.add(v1,v2)
with tf.name_scope("Scope_D"):
g = tf.multiply(f,e)
with tf.Session() as sess:
writer = tf.summary.FileWriter("/tmp/tboard/output_la", sess.graph)
print(sess.run(g))
writer.close()
In [8]:
#with scope 1
import tensorflow as tf
v1=tf.constant(4)
v2=tf.constant(2)
with tf.name_scope("MyOperationGroup"):
with tf.name_scope("Scope_A"):
a = tf.multiply(v1,v1)
b = tf.multiply(v2,v2)
with tf.name_scope("Scope_B"):
c = tf.add(a, b, name="And_These_ones")
d = tf.multiply(v1, v2, name="Multiply_these_numbers")
with tf.name_scope("Scope_C"):
e = tf.multiply(2, d, name="B_add")
g = tf.subtract(c,e)
with tf.Session() as sess:
writer = tf.summary.FileWriter("/tmp/tboard/output3", sess.graph)
print(sess.run(g))
writer.close()
In [ ]: