In [1]:
import numpy as np
np.random.seed(42)
import sys
import cProfile
import h5py
sys.path.insert(0, '../..')
%reload_ext memory_profiler
%reload_ext autoreload
%autoreload 1
import allel; print(allel.__version__)
%aimport allel.stats.selection
In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
In [3]:
callset = h5py.File('/data/coluzzi/ag1000g/data/phase1/release/AR3/haplotypes/main/hdf5/ag1000g.phase1.ar3.haplotypes.3R.h5',
mode='r')
callset
Out[3]:
In [4]:
n_variants = 500000
n_samples = 100
In [5]:
h = allel.GenotypeArray(callset['3R']['calldata/genotype'][:n_variants, :n_samples]).to_haplotypes()
h
Out[5]:
In [6]:
pos = callset['3R']['variants/POS'][:n_variants]
pos
Out[6]:
In [7]:
ac = h.count_alleles(max_allele=1)
is_seg = ac.is_segregating() & (ac.min(axis=1) > 1)
h_seg = h.compress(is_seg, axis=0)
pos_seg = pos.compress(is_seg)
ac_seg = ac.compress(is_seg, axis=0)
np.count_nonzero(is_seg)
Out[7]:
In [8]:
%%time
nsl = allel.stats.nsl(h_seg, use_threads=False)
In [10]:
%%time
nsl_threaded = allel.stats.nsl(h_seg, use_threads=True)
In [11]:
nsl
Out[11]:
In [12]:
nsl_threaded
Out[12]:
In [13]:
np.count_nonzero(np.isnan(nsl)), np.count_nonzero(~np.isnan(nsl))
Out[13]:
In [14]:
np.count_nonzero(np.isinf(nsl)), np.count_nonzero(~np.isinf(nsl))
Out[14]:
In [15]:
plt.figure(figsize=(16, 4))
plt.plot(pos_seg, nsl, linestyle=' ', marker='o', mfc='none')
plt.grid(axis='y')
plt.xlabel('position (bp)')
plt.ylabel('unstandardised NSL');
In [16]:
plt.figure(figsize=(16, 6))
plt.plot(ac_seg[:, 1], nsl, linestyle=' ', marker='o', mfc='none')
plt.xlabel('alternate allele count')
plt.ylabel('unstandardised NSL score')
plt.grid(axis='y');
In [17]:
nsl_standardized, ac_bins = allel.stats.standardize_by_allele_count(nsl, ac_seg[:, 1])
In [18]:
plt.figure(figsize=(16, 6))
plt.plot(ac_seg[:, 1], nsl_standardized, linestyle=' ', marker='o', mfc='none')
plt.xlabel('Alternate allele count')
plt.ylabel('Standardised NSL score')
plt.grid(axis='y');
In [19]:
plt.figure(figsize=(16, 4))
plt.plot(pos_seg, nsl_standardized, linestyle=' ', marker='o', mfc='none')
plt.grid(axis='y')
plt.xlabel('Position (bp)')
plt.ylabel('Standardised NSL score');
In [20]:
plt.figure(figsize=(16, 4))
plt.plot(pos_seg, np.abs(nsl_standardized), linestyle=' ', marker='o', mfc='none')
plt.grid(axis='y')
plt.xlabel('Position (bp)')
plt.ylabel('|Standardised NSL score|');
In [21]:
cProfile.run('allel.stats.nsl(h_seg[:50000], use_threads=False)', sort='time')
In [22]:
ihs_min0 = allel.stats.ihs(h_seg, pos_seg, min_ehh=0.0, include_edges=True)
In [23]:
plt.figure(figsize=(8, 8))
plt.plot(ihs_min0, nsl, marker='o', linestyle=' ', mfc='none')
plt.xlabel('Unstandardized IHS (min_ehh=0)')
plt.ylabel('Unstandardized NSL')
plt.grid(axis='both');
In [24]:
ihs = allel.stats.ihs(h_seg, pos_seg, min_ehh=0.05, include_edges=True)
In [25]:
plt.figure(figsize=(8, 8))
plt.plot(ihs, nsl, marker='o', linestyle=' ', mfc='none')
plt.xlabel('Unstandardized IHS (min_ehh=0.05)')
plt.ylabel('Unstandardized NSL')
plt.grid(axis='both');
In [26]:
ihs_standardized, _ = allel.stats.standardize_by_allele_count(ihs, ac_seg[:, 1])
In [27]:
plt.figure(figsize=(8, 8))
plt.plot(ihs_standardized, nsl_standardized, marker='o', linestyle=' ', mfc='none')
plt.xlabel('Standardized IHS (min_ehh=0.05)')
plt.ylabel('Standardized NSL')
plt.grid(axis='both');
In [28]:
loc_variants = slice(4000000, 9000000, 1)
n_samples = 50
h = allel.GenotypeArray(callset['3R']['calldata/genotype'][loc_variants, :n_samples]).to_haplotypes()
h
Out[28]:
In [29]:
pos = callset['3R']['variants/POS'][loc_variants]
pos
Out[29]:
In [30]:
ac = h.count_alleles(max_allele=1)
is_seg = ac.is_segregating() & (ac.min(axis=1) > 10)
h_seg = h.compress(is_seg, axis=0)
pos_seg = pos.compress(is_seg)
ac_seg = ac.compress(is_seg, axis=0)
np.count_nonzero(is_seg)
Out[30]:
In [43]:
def plot_score_gap(score, pos, ylim=(-10, 10)):
fig = plt.figure(figsize=(16, 4))
ax = fig.add_subplot(111)
ax.plot(pos, score, linestyle=' ', marker='o', mfc='none', markersize=2)
ax.grid(axis='y')
ax.set_xlabel('position (bp)')
ax.set_ylabel('score')
ax.set_ylim(*ylim)
ax = ax.twinx()
x = (pos[:-1] + pos[1:]) / 2
y = np.diff(pos)
ax.plot(x, y)
ax.set_ylabel('gap size (bp)')
ax.autoscale(axis='x', tight=True);
In [44]:
nsl = allel.stats.nsl(h_seg)
nsl_standardized, _ = allel.stats.standardize_by_allele_count(nsl, ac_seg[:, 1])
In [45]:
nsl.shape, nsl_standardized.shape
Out[45]:
In [46]:
plot_score_gap(nsl, pos_seg)
In [47]:
plot_score_gap(nsl_standardized, pos_seg)
In [48]:
plot_score_gap(np.abs(nsl_standardized), pos_seg, ylim=(0, 10))
In [49]:
accessibility = h5py.File('/data/coluzzi/ag1000g/data/phase1/release/AR3/accessibility/accessibility.h5', mode='r')
is_accessible = accessibility['3R']['is_accessible'][:]
is_accessible
Out[49]:
In [52]:
ihs_access_adjusted = allel.stats.ihs(h_seg, pos_seg, min_ehh=0.05, max_gap=-1, clip_gap=-1,
is_accessible=is_accessible)
ihs_access_adjusted, _ = allel.stats.standardize_by_allele_count(ihs_access_adjusted, ac_seg[:, 1])
In [57]:
plot_score_gap(np.abs(nsl_standardized), pos_seg, ylim=(0, 10))
plt.title('|NSL|');
In [58]:
plot_score_gap(np.abs(ihs_access_adjusted), pos_seg, ylim=(0, 12))
plt.title('|IHS|');
In [ ]: