In [1]:
import pandas as pd
import numpy as np

In [8]:
legislatorsData = pd.read_csv("../data/legislators.csv")
legislatorsData.head()
legislatorsData.columns
legislators = pd.DataFrame(legislatorsData)
legislators.head()


Out[8]:
title firstname middlename lastname name_suffix nickname party state district in_office ... govtrack_id crp_id twitter_id congresspedia_url youtube_url facebook_id official_rss senate_class birthdate oc_email
0 Rep Neil NaN Abercrombie NaN NaN D HI 1 0 ... 400001 N00007665 neilabercrombie http://www.opencongress.org/wiki/Neil_Abercrombie http://youtube.com/hawaiirep1 NaN NaN NaN 1938-06-26 NaN
1 Rep Gary L. Ackerman NaN NaN D NY 5 0 ... 400003 N00001143 repgaryackerman http://www.opencongress.org/wiki/Gary_Ackerman http://youtube.com/RepAckerman RepAcherman NaN NaN 1942-11-19 NaN
2 Rep Robert B. Aderholt NaN NaN R AL 4 1 ... 400004 N00003028 Robert_Aderholt http://www.opencongress.org/wiki/Robert_Aderholt http://youtube.com/RobertAderholt 19787529402 NaN NaN 1965-07-22 Rep.Aderholt@opencongress.org
3 Sen Daniel Kahikina Akaka NaN NaN D HI Junior Seat 0 ... 300001 N00007653 NaN http://www.opencongress.org/wiki/Daniel_Akaka http://youtube.com/senatorakaka danielakaka NaN I 1924-09-11 NaN
4 Sen Wayne A. Allard NaN NaN R CO Senior Seat 0 ... 300003 N00009082 NaN http://www.opencongress.org/wiki/Wayne_Allard NaN NaN NaN II 1943-12-02 NaN

5 rows × 29 columns


In [12]:
legislators.columns.tolist()


Out[12]:
['title',
 'firstname',
 'middlename',
 'lastname',
 'name_suffix',
 'nickname',
 'party',
 'state',
 'district',
 'in_office',
 'gender',
 'phone',
 'fax',
 'website',
 'webform',
 'congress_office',
 'bioguide_id',
 'votesmart_id',
 'fec_id',
 'govtrack_id',
 'crp_id',
 'twitter_id',
 'congresspedia_url',
 'youtube_url',
 'facebook_id',
 'official_rss',
 'senate_class',
 'birthdate',
 'oc_email']

In [30]:
print legislators.bioguide_id.head()
l_bioGuides = legislators.bioguide_id.tolist()
l_bioGuides[:3]
print "Bio Guides available for the congress :", len(l_bioGuides)


0    A000014
1    A000022
2    A000055
3    A000069
4    A000109
Name: bioguide_id, dtype: object
Bio Guides available for the congress : 897

In [172]:
from urllib2 import Request, urlopen
import json
from pandas.io.json import json_normalize

request=Request('http://capitolwords.org/api/1/phrases.json?entity_type=month&entity_value=201007&sort=count+desc&apikey=0bf8e7eb6ce146f48217bfee767c998d')

response = urlopen(request)
contents = response.read()
data = json.loads(contents)
print "Example object and query to the sunlight API:"
print data[:5]


Example object and query to the sunlight API:
[{u'tfidf': 3.85965571248e-05, u'count': 5373, u'ngram': u'people'}, {u'tfidf': 1.30267768302e-05, u'count': 3637, u'ngram': u'one'}, {u'tfidf': 2.52066478599e-05, u'count': 3509, u'ngram': u'jobs'}, {u'tfidf': 1.17409333103e-05, u'count': 3278, u'ngram': u'american'}, {u'tfidf': 1.14866299957e-05, u'count': 3207, u'ngram': u'years'}]

In [42]:
first_table_ever = json_normalize(data)
print "After converting the content of the request in to a DataFrame\n Popular words of the month \n 100 only prionting a few:"
print "The shape is: ",first_table_ever.shape
first_table_ever.head(8)


After converting the content of the request in to a DataFrame
 Popular words of the month 
 100 only prionting a few:
The shape is:  (100, 3)
Out[42]:
count ngram tfidf
0 5373 people 0.000039
1 3637 one 0.000013
2 3509 jobs 0.000025
3 3278 american 0.000012
4 3207 years 0.000011
5 3051 going 0.000022
6 2874 work 0.000010
7 2874 support 0.000010

In [51]:
print "Yes they are unique"
len(first_table_ever.ngram.unique())


Yes they are unique
Out[51]:
100

In [54]:
print "One legislator fav words"

request=Request('http://capitolwords.org/api/1/phrases.json?entity_type=legislator&entity_value=L000551&apikey=0bf8e7eb6ce146f48217bfee767c998d')

response = urlopen(request)
contents = response.read()
data = json.loads(contents)
print data[:5]
len(data)


One legislator fav words
[{u'tfidf': 0.00227655265553, u'count': 847, u'ngram': u'oakland'}, {u'tfidf': 0.00099708278004, u'count': 218, u'ngram': u'alameda'}, {u'tfidf': 0.000860881733709, u'count': 948, u'ngram': u'aids'}, {u'tfidf': 0.000711050866521, u'count': 487, u'ngram': u'hiv'}, {u'tfidf': 0.000699507858333, u'count': 431, u'ngram': u'haiti'}]
Out[54]:
100

In [70]:
legislator_example = json_normalize(data)
legislator_example.head()
list_of_words = legislator_example.ngram.tolist()
favorite_words ="|".join(list_of_words)
print "list of favorite words of a legislator:"
favorite_words


list of favorite words of a legislator:
Out[70]:
u"oakland|alameda|aids|hiv|haiti|berkeley|african|caribbean|dellums|congresswoman|haitian|pandemic|bay|caucus|black|darfur|africa|iraq|genocide|disparities|california's|occupation|francisco|asian|sudan|gentlewoman|california|housing|color|naacp|cuba|racism|poverty|slavery|peace|san|bush|african-american|reverend|rights|baptist|really|unemployed|health|racial|height|civil|minorities|global|equality|women|iran|justice|movement|troops|uninsured|tonight|pacific|pastor|ron|congressman|social|discrimination|violence|waters|progressive|education|humanitarian|human|affordable|international|salute|church|afghanistan|jackson|girls|port|community|king|prescription|war|res|low-income|communities|weapons|unemployment|organizing|women's|security|poor|youth|drugs|nations|h.|frankly|nuclear|parks|green|resolution|congressional"

In [148]:
legislators_option1 = legislators
def requestWords( id ):
    id = str(id)
    url = "http://capitolwords.org/api/1/phrases.json?entity_type=legislator&entity_value="+id+"&apikey=0bf8e7eb6ce146f48217bfee767c998d"
    request=Request(url)
    response = urlopen(request)
    contents = response.read()
    len(contents)
    if len(contents) > 2:
        data = json.loads(contents)
        words = json_normalize(data)
        list_of_words = words.ngram.tolist()
        string_of_words ="|".join(list_of_words)
        return string_of_words
    else:
        return np.nan

requestWords(id ="A000369")


2
Out[148]:
nan

In [153]:
legislators_option1.dtypes
legislators_option1.bioguide_id.astype(str)
legislators_option1.dtypes
legislators_option1['favorite_words'] = legislators_option1.apply(lambda row: requestWords(row['bioguide_id']),axis=1)


10180
9976
9986
10083
10256
10131
10185
9960
10076
9897
9978
10034
1072
9942
9953
9961
9931
2
10046
2
2
2
9867
10069
10183
9983
10058
9855
10112
9974
10119
10049
10030
10263
10044
10102
9964
10167
10094
10154
10219
9983
10103
10089
10009
10053
10088
10073
10130
10167
10013
9992
10157
10336
9974
9906
10158
10041
10075
10094
10138
10025
10090
10011
10071
9994
10102
9999
10041
10101
10053
10036
9916
9893
10074
9919
9958
10004
10016
9999
9968
9926
10000
10005
10127
9995
10002
10173
10007
9915
9953
9910
9878
9943
9869
9923
9961
9979
9945
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
9922
2
2
2
9921
10068
10105
10133
10080
10039
10049
10220
10057
10078
10109
10004
10085
10062
10053
10139
10028
10121
9969
9969
10204
10106
10044
10134
10077
10178
10059
10043
10058
10219
9918
10053
10045
9977
9937
9996
9964
9969
10082
10115
9999
9892
10025
9916
9964
9967
9901
10084
10001
9942
9913
10000
10038
9986
9948
10030
10042
10039
9944
9949
10054
10030
9930
9965
9974
9859
10052
9983
9864
9808
10015
2
2
2
2
2
2
2
2
10118
2
2
2
2
2
10022
10095
10207
10136
10038
10045
10174
10117
10250
10072
10156
10288
10069
10255
10112
10225
9936
10326
10140
10205
10109
10077
10059
10095
10056
10076
10074
10069
10046
10125
10024
9952
10114
10095
9951
9998
9989
9957
9949
9973
9876
2
10101
2
2
2
10033
2
2
2
10184
10244
10013
10091
10159
10130
10129
10148
10124
10238
10141
10104
10016
10107
9964
2
7470
2
10071
10141
10108
10285
10160
10133
10201
10103
10189
10103
10129
10015
10169
10130
10078
10112
10023
10031
10030
9945
10081
9989
10013
9892
5423
9833
10084
2
2
9986
10135
10146
10105
10112
10198
10081
9987
10241
10119
10232
10024
10033
10130
10102
10117
10132
10043
10020
9988
10044
9980
9949
10035
10029
10049
9989
9913
9917
9979
9943
9973
9929
9966
2620
9944
9911
2
2
2
2
2
10140
10145
10133
10172
10209
10062
10219
10015
10132
10006
10146
10143
9999
10140
10319
10100
10149
10183
10150
10129
10117
10212
10024
10139
10105
10024
10069
10082
9928
10027
10043
10034
10047
9965
9938
9997
10137
9919
9939
9908
9864
9893
9976
2
9944
9835
9894
9938
10002
2
2
2
2
2
2
2
2
2
2
2
10000
10141
10028
10020
10142
10049
9997
10217
10103
10140
9966
10109
9996
10205
10124
9961
10094
9996
10022
9983
10099
9899
9907
2
2
2
2
10177
10203
10341
10176
10240
10026
10168
10146
9955
10044
10212
10126
10143
10215
10038
10106
10138
10133
10009
10127
10109
10108
10016
9956
10084
10125
10068
10200
10092
9959
3406
9863
2
2
2
2
2
2
2
2
2
2
10188
10124
10240
10012
10151
10223
10242
10187
10121
9995
10124
10279
10207
10142
10180
10005
10125
9944
10155
10198
10141
10044
10049
10070
10150
9871
10046
10040
9985
10031
9997
10068
9993
9881
9931
9998
10077
2
9899
9879
9839
10046
2
2
2
2
2
2
2
2
10143
10143
10268
10058
10243
10239
10128
10144
10160
10038
10205
10078
10096
10205
10205
10162
10172
10212
10210
10194
10083
10230
10116
10056
10093
10036
9931
10117
10084
10113
10030
10017
9977
10159
10019
10081
10014
10024
10049
10086
10004
10053
10029
9945
2
10015
10079
10115
10096
9973
9999
9957
10076
9879
10010
10085
9996
10078
10096
10095
10016
10081
10007
10024
9948
9856
5753
9924
9973
2
2
2
2
2
2
2
2
2
2
2
2
10109
10097
10135
10065
10132
10106
9979
10102
9962
10002
10089
9863
9953
9899
2
2
10295
10228
10127
10047
10117
9998
9987
2
10189
10059
9961
10073
10195
10003
10105
10101
10081
10068
10146
10112
10204
10210
10153
10010
10198
10059
10006
10067
10028
10167
10063
10075
10005
10005
10042
10079
10130
9999
10165
9946
9973
10015
2
2
2
2
2
2
2
2
2
9930
9932
10180
10058
10153
10174
10214
10196
10168
10061
10195
10241
10056
10143
10122
9964
10017
10039
10005
10181
10193
10111
9961
10095
10056
10105
10053
9960
10071
9961
10013
10015
10008
9925
9968
9897
4168
8892
9912
9942
2845
9914
9865
5048
9983
9978
2
2
2
2
2
2
2
2
2
10053
10083
10123
10064
10122
10149
10134
10158
10076
10243
10071
10130
10051
9994
10167
10180
10064
10162
10099
10186
10104
10262
10127
10198
10205
10168
10214
10160
10156
10184
10192
10179
10167
10193
10069
10074
10193
10049
9932
9947
10063
10025
10107
10178
10027
9975
10038
10102
10106
9983
9983
10002
10169
10105
10044
9971
10013
10014
9940
9941
10081
9811
9929
9967
9989
8051
9831
9944
4664
2
2
2
2
2
2
2
2
10114
10142
10084
9998
10105
10123
10193
10150
10115
10255
10106
10015
10002
10027
10025
9999
9786
10059
9867
9713
9820
9715
2
9467
9766
2
2
9829
9789
10202
9806
10083
9805
10209
9848
9861
9791
2
9768
9701
10116
10122
10276
10106
10117
10177
10138
10177
10152
9801
9770
10161
10215
9851
10183
10127
9727
10014
10106
10087
9805
9944
9713
9830
10075
9727
10056
9853
10035
9742
9778
9813
9987
9818
9768
9815
4711
9862
9777
9736
9098
9008
9811
9782
2
4054
9832
10159
10153
9807
9811
9733
7328
9960
2
9926

In [155]:
legislators_option1.favorite_words.head(20)


Out[155]:
0     hawaiian|hawaii|hawaiians|hawaii's|kalaupapa|e...
1     queens|rabbi|jewish|bayside|flushing|nassau|br...
2     aderholt|requesting|irons|huntsville|alabama|r...
3     hawaii's|hawaii|hawaiians|hawaiian|dsh|va|fas|...
4     colorado|flats|missile|rocky|colorado's|denver...
5     camden|gloucester|cyprus|rutgers|opic|jersey|p...
6     mercury|maine|prescription|pharmaceutical|drug...
7     freddie|morgenthau|fannie|you've|pilgrims|mayf...
8     tennesseans|carbon-free|tennessee|electricity|...
9     rodney|baton|rouge|lsu|louisiana|la|ruston|req...
10    murphy|drill|pittsburgh|altmire|sbir|oil|anwr|...
11    upstate|herkimer|utica|tay-sachs|suny|cybersec...
12    nj|2009|objection|army|minutes|recognized|6|se...
13    fairborn|ohio's|xenia|gire|wright-patterson|wa...
14    endeavour|skyler|meanings|shuttle|eagle|scout|...
15    foia|8015|aumf|government-set|davis-bacon|1034...
16    hampshire|guantanamo|timberland|gitmo|detainin...
17                                                  NaN
18    alean|brock|gantt|anderton|calvin's|sickle|cal...
19                                                  NaN
Name: favorite_words, dtype: object

In [204]:
# Beneficiaries for events:
def requestBeneficiaries( id ):
    id = str(id)
    url = "politicalpartytime.org/api/v1/event/?format=json&beneficiaries__crp_id="+id+"&apikey=0bf8e7eb6ce146f48217bfee767c998d"
    print contents

    
    if len(contents) > 2:
        data = json.loads(contents)
        beneficiary = json_normalize(data)
        #words = json_normalize(data)
        #list_of_words = words.ngram.tolist()
        #string_of_words ="|".join(list_of_words)
        #return string_of_words
    else:
        return np.nan

requestBeneficiaries(id ="N00003675")


[
    {
        "tfidf": 3.8596557124800003e-05,
        "count": 5373,
        "ngram": "people"
    },
    {
        "tfidf": 1.30267768302e-05,
        "count": 3637,
        "ngram": "one"
    },
    {
        "tfidf": 2.52066478599e-05,
        "count": 3509,
        "ngram": "jobs"
    },
    {
        "tfidf": 1.17409333103e-05,
        "count": 3278,
        "ngram": "american"
    },
    {
        "tfidf": 1.14866299957e-05,
        "count": 3207,
        "ngram": "years"
    },
    {
        "tfidf": 2.1916637965399999e-05,
        "count": 3051,
        "ngram": "going"
    },
    {
        "tfidf": 1.02939116332e-05,
        "count": 2874,
        "ngram": "work"
    },
    {
        "tfidf": 1.02939116332e-05,
        "count": 2874,
        "ngram": "support"
    },
    {
        "tfidf": 2.05446032714e-05,
        "count": 2860,
        "ngram": "us"
    },
    {
        "tfidf": 1.00897526342e-05,
        "count": 2817,
        "ngram": "small"
    },
    {
        "tfidf": 9.97513705586e-06,
        "count": 2785,
        "ngram": "new"
    },
    {
        "tfidf": 9.2802801119300001e-06,
        "count": 2591,
        "ngram": "country"
    },
    {
        "tfidf": 9.2050636386200008e-06,
        "count": 2570,
        "ngram": "many"
    },
    {
        "tfidf": 9.1656645335599999e-06,
        "count": 2559,
        "ngram": "year"
    },
    {
        "tfidf": 1.8339290962200001e-05,
        "count": 2553,
        "ngram": "know"
    },
    {
        "tfidf": 1.8037586997999999e-05,
        "count": 2511,
        "ngram": "want"
    },
    {
        "tfidf": 8.9686690082100002e-06,
        "count": 2504,
        "ngram": "states"
    },
    {
        "tfidf": 8.9543420609200003e-06,
        "count": 2500,
        "ngram": "government"
    },
    {
        "tfidf": 8.6713848517900004e-06,
        "count": 2421,
        "ngram": "legislation"
    },
    {
        "tfidf": 1.70247236899e-05,
        "count": 2370,
        "ngram": "business"
    },
    {
        "tfidf": 8.3454468007800006e-06,
        "count": 2330,
        "ngram": "make"
    },
    {
        "tfidf": 1.6457232900199999e-05,
        "count": 2291,
        "ngram": "get"
    },
    {
        "tfidf": 7.7974410666500001e-06,
        "count": 2177,
        "ngram": "federal"
    },
    {
        "tfidf": 7.7114793828599999e-06,
        "count": 2153,
        "ngram": "congress"
    },
    {
        "tfidf": 7.6971524355599999e-06,
        "count": 2149,
        "ngram": "national"
    },
    {
        "tfidf": 7.6255176990799997e-06,
        "count": 2129,
        "ngram": "need"
    },
    {
        "tfidf": 1.48337782361e-05,
        "count": 2065,
        "ngram": "like"
    },
    {
        "tfidf": 7.3783778582e-06,
        "count": 2060,
        "ngram": "well"
    },
    {
        "tfidf": 7.34614222678e-06,
        "count": 2051,
        "ngram": "united"
    },
    {
        "tfidf": 1.4352488579099999e-05,
        "count": 1998,
        "ngram": "think"
    },
    {
        "tfidf": 1.43022045851e-05,
        "count": 1991,
        "ngram": "percent"
    },
    {
        "tfidf": 1.4129802319900001e-05,
        "count": 1967,
        "ngram": "colleagues"
    },
    {
        "tfidf": 7.02378591258e-06,
        "count": 1961,
        "ngram": "back"
    },
    {
        "tfidf": 1.38568320666e-05,
        "count": 1929,
        "ngram": "americans"
    },
    {
        "tfidf": 6.7157565456900002e-06,
        "count": 1875,
        "ngram": "help"
    },
    {
        "tfidf": 6.6906843879200001e-06,
        "count": 1868,
        "ngram": "tax"
    },
    {
        "tfidf": 6.6799391774400001e-06,
        "count": 1865,
        "ngram": "first"
    },
    {
        "tfidf": 2.0011408665000002e-05,
        "count": 1852,
        "ngram": "yield"
    },
    {
        "tfidf": 6.5975592304799999e-06,
        "count": 1842,
        "ngram": "community"
    },
    {
        "tfidf": 1.9449533259799998e-05,
        "count": 1800,
        "ngram": "businesses"
    },
    {
        "tfidf": 1.2915803035599999e-05,
        "count": 1798,
        "ngram": "important"
    },
    {
        "tfidf": 6.4327993365600004e-06,
        "count": 1796,
        "ngram": "program"
    },
    {
        "tfidf": 6.3862367578500003e-06,
        "count": 1783,
        "ngram": "million"
    },
    {
        "tfidf": 1.26140990715e-05,
        "count": 1756,
        "ngram": "way"
    },
    {
        "tfidf": 6.26445770582e-06,
        "count": 1749,
        "ngram": "america"
    },
    {
        "tfidf": 1.8271755967899999e-05,
        "count": 1691,
        "ngram": "thank"
    },
    {
        "tfidf": 5.9564283389200001e-06,
        "count": 1663,
        "ngram": "u.s."
    },
    {
        "tfidf": 1.19173065829e-05,
        "count": 1659,
        "ngram": "go"
    },
    {
        "tfidf": 1.7925986487700001e-05,
        "count": 1659,
        "ngram": "money"
    },
    {
        "tfidf": 1.19173065829e-05,
        "count": 1659,
        "ngram": "care"
    },
    {
        "tfidf": 1.18023717395e-05,
        "count": 1643,
        "ngram": "billion"
    },
    {
        "tfidf": 1.18023717395e-05,
        "count": 1643,
        "ngram": "unemployment"
    },
    {
        "tfidf": 5.8561397078399999e-06,
        "count": 1635,
        "ngram": "law"
    },
    {
        "tfidf": 5.6877980770900003e-06,
        "count": 1588,
        "ngram": "could"
    },
    {
        "tfidf": 5.6770528666200003e-06,
        "count": 1585,
        "ngram": "every"
    },
    {
        "tfidf": 1.1364182648699999e-05,
        "count": 1582,
        "ngram": "economy"
    },
    {
        "tfidf": 5.6018363933100002e-06,
        "count": 1564,
        "ngram": "health"
    },
    {
        "tfidf": 5.51587470953e-06,
        "count": 1540,
        "ngram": "may"
    },
    {
        "tfidf": 5.3761869733699996e-06,
        "count": 1501,
        "ngram": "right"
    },
    {
        "tfidf": 1.07392244373e-05,
        "count": 1495,
        "ngram": "vote"
    },
    {
        "tfidf": 5.2472444477000002e-06,
        "count": 1465,
        "ngram": "ask"
    },
    {
        "tfidf": 5.2150088162800001e-06,
        "count": 1456,
        "ngram": "economic"
    },
    {
        "tfidf": 5.1899366585100001e-06,
        "count": 1449,
        "ngram": "great"
    },
    {
        "tfidf": 1.04016033346e-05,
        "count": 1448,
        "ngram": "last"
    },
    {
        "tfidf": 5.13979234297e-06,
        "count": 1435,
        "ngram": "security"
    },
    {
        "tfidf": 1.01501833645e-05,
        "count": 1413,
        "ngram": "job"
    },
    {
        "tfidf": 5.0538306591799997e-06,
        "count": 1411,
        "ngram": "rise"
    },
    {
        "tfidf": 1.00567988042e-05,
        "count": 1400,
        "ngram": "take"
    },
    {
        "tfidf": 5.0036863436399996e-06,
        "count": 1397,
        "ngram": "service"
    },
    {
        "tfidf": 9.9634142438399995e-06,
        "count": 1387,
        "ngram": "even"
    },
    {
        "tfidf": 4.8998159757300002e-06,
        "count": 1368,
        "ngram": "members"
    },
    {
        "tfidf": 2.44672578777e-05,
        "count": 1351,
        "ngram": "oil"
    },
    {
        "tfidf": 9.6114262856900002e-06,
        "count": 1338,
        "ngram": "come"
    },
    {
        "tfidf": 4.7852003973499999e-06,
        "count": 1336,
        "ngram": "made"
    },
    {
        "tfidf": 4.7637099764099999e-06,
        "count": 1330,
        "ngram": "chairman"
    },
    {
        "tfidf": 4.7422195554599999e-06,
        "count": 1324,
        "ngram": "good"
    },
    {
        "tfidf": 9.4102903096099999e-06,
        "count": 1310,
        "ngram": "much"
    },
    {
        "tfidf": 4.6884935030999998e-06,
        "count": 1309,
        "ngram": "world"
    },
    {
        "tfidf": 4.5416422933000003e-06,
        "count": 1268,
        "ngram": "pay"
    },
    {
        "tfidf": 4.5201518723500002e-06,
        "count": 1262,
        "ngram": "put"
    },
    {
        "tfidf": 4.4843345041100002e-06,
        "count": 1252,
        "ngram": "insurance"
    },
    {
        "tfidf": 4.4735892936300001e-06,
        "count": 1249,
        "ngram": "financial"
    },
    {
        "tfidf": 4.43777192539e-06,
        "count": 1239,
        "ngram": "public"
    },
    {
        "tfidf": 4.3733006625499999e-06,
        "count": 1221,
        "ngram": "administration"
    },
    {
        "tfidf": 4.3518102416099999e-06,
        "count": 1215,
        "ngram": "families"
    },
    {
        "tfidf": 8.6201132607100001e-06,
        "count": 1200,
        "ngram": "spending"
    },
    {
        "tfidf": 8.5841961221300001e-06,
        "count": 1195,
        "ngram": "floor"
    },
    {
        "tfidf": 4.2730120314699997e-06,
        "count": 1193,
        "ngram": "see"
    },
    {
        "tfidf": 4.2694302946499997e-06,
        "count": 1192,
        "ngram": "benefits"
    },
    {
        "tfidf": 3.4544420663100002e-05,
        "count": 1182,
        "ngram": "2010"
    },
    {
        "tfidf": 4.1834686108600003e-06,
        "count": 1168,
        "ngram": "day"
    },
    {
        "tfidf": 4.1583964530900002e-06,
        "count": 1161,
        "ngram": "two"
    },
    {
        "tfidf": 8.2465750194200005e-06,
        "count": 1148,
        "ngram": "continue"
    },
    {
        "tfidf": 4.0724347693100001e-06,
        "count": 1137,
        "ngram": "energy"
    },
    {
        "tfidf": 8.1100898927899995e-06,
        "count": 1129,
        "ngram": "since"
    },
    {
        "tfidf": 4.0222904537599999e-06,
        "count": 1123,
        "ngram": "home"
    },
    {
        "tfidf": 3.9900548223399998e-06,
        "count": 1114,
        "ngram": "war"
    },
    {
        "tfidf": 3.9828913486999999e-06,
        "count": 1112,
        "ngram": "family"
    },
    {
        "tfidf": 3.8826027176100004e-06,
        "count": 1084,
        "ngram": "fact"
    },
    {
        "tfidf": 3.8646940334900004e-06,
        "count": 1079,
        "ngram": "must"
    }
]