Order of results
Training score, Test score, Time, Features, SVM parameters
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\pool.py:436: UserWarning: Failed to clean temporary folder: C:\Users\c_am_\AppData\Local\Temp\joblib_memmaping_pool_7456_1997645054584
warnings.warn("Failed to clean temporary folder: %s" % folder_path)
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
726 try:
--> 727 self._output.extend(job.get())
728 except tuple(self.exceptions) as exception:
C:\Anaconda3\lib\multiprocessing\pool.py in get(self, timeout)
601 def get(self, timeout=None):
--> 602 self.wait(timeout)
603 if not self.ready():
C:\Anaconda3\lib\multiprocessing\pool.py in wait(self, timeout)
598 def wait(self, timeout=None):
--> 599 self._event.wait(timeout)
600
C:\Anaconda3\lib\threading.py in wait(self, timeout)
548 if not signaled:
--> 549 signaled = self._cond.wait(timeout)
550 return signaled
C:\Anaconda3\lib\threading.py in wait(self, timeout)
292 if timeout is None:
--> 293 waiter.acquire()
294 gotit = True
KeyboardInterrupt:
During handling of the above exception, another exception occurred:
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-10-65307e56070b> in <module>()
46 random_state=0))
47 #Test classifier
---> 48 gscv.fit(X_train_std, y_train)
49 sys.exit("Error message")
50 #Save our estimator
C:\Anaconda3\lib\site-packages\sklearn\grid_search.py in fit(self, X, y)
802
803 """
--> 804 return self._fit(X, y, ParameterGrid(self.param_grid))
805
806
C:\Anaconda3\lib\site-packages\sklearn\grid_search.py in _fit(self, X, y, parameter_iterable)
551 self.fit_params, return_parameters=True,
552 error_score=self.error_score)
--> 553 for parameters in parameter_iterable
554 for train, test in cv)
555
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
808 # consumption.
809 self._iterating = False
--> 810 self.retrieve()
811 # Make sure that we get a last message telling us we are done
812 elapsed_time = time.time() - self._start_time
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
748 # the results as we will raise the exception we got back
749 # to the caller instead of returning any result.
--> 750 self._terminate_pool()
751 if self._managed_pool:
752 # In case we had to terminate a managed pool, let
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in _terminate_pool(self)
547 if self._pool is not None:
548 self._pool.close()
--> 549 self._pool.terminate() # terminate does a join()
550 self._pool = None
551 if self.backend == 'multiprocessing':
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\pool.py in terminate(self)
581
582 def terminate(self):
--> 583 super(MemmapingPool, self).terminate()
584 delete_folder(self._temp_folder)
C:\Anaconda3\lib\multiprocessing\pool.py in terminate(self)
503 self._state = TERMINATE
504 self._worker_handler._state = TERMINATE
--> 505 self._terminate()
506
507 def join(self):
C:\Anaconda3\lib\multiprocessing\util.py in __call__(self, wr, _finalizer_registry, sub_debug, getpid)
183 sub_debug('finalizer calling %s with args %s and kwargs %s',
184 self._callback, self._args, self._kwargs)
--> 185 res = self._callback(*self._args, **self._kwargs)
186 self._weakref = self._callback = self._args = \
187 self._kwargs = self._key = None
C:\Anaconda3\lib\multiprocessing\pool.py in _terminate_pool(cls, taskqueue, inqueue, outqueue, pool, worker_handler, task_handler, result_handler, cache)
544 util.debug('joining worker handler')
545 if threading.current_thread() is not worker_handler:
--> 546 worker_handler.join()
547
548 # Terminate workers which haven't already finished.
C:\Anaconda3\lib\threading.py in join(self, timeout)
1052
1053 if timeout is None:
-> 1054 self._wait_for_tstate_lock()
1055 else:
1056 # the behavior of a negative timeout isn't documented, but
C:\Anaconda3\lib\threading.py in _wait_for_tstate_lock(self, block, timeout)
1068 if lock is None: # already determined that the C code is done
1069 assert self._is_stopped
-> 1070 elif lock.acquire(block, timeout):
1071 lock.release()
1072 self._stop()
KeyboardInterrupt: