In [1]:
from pandas import read_csv

from itertools import combinations
from time import time
from sklearn.svm import SVC
import re
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import grid_search
from os import listdir
from os.path import isfile
from sklearn.preprocessing import MinMaxScaler

In [2]:
#Known

"""
df = read_csv(".\\..\\Data\\Readings_b_0102_31_01_2016.csv")
y = df['Class']
#Unknown
df_u = read_csv(".\\..\\Data\\Readings_b_03_31_01_2016.csv")
y_fromBeyond = df_u['Class']

if __name__ == '__main__':
    print('number_of_features,features,best_score,unknown_data_score')
    #SVM and parameters
    svm = SVC()
    param_grid = [{'C': [1, 10, 100], 'gamma': [0.1, 0.01, 0.001], 'kernel': ['rbf']}]
    clf = grid_search.GridSearchCV(svm, param_grid, n_jobs=-1)

    features = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
    stdsc = StandardScaler()
    for i in xrange(13, 15):
        for j in combinations(features, i):
            #Select columns from table
            X = df.ix[:, list(j)]
            X_fromBeyond = df_u.ix[:, list(j)]  
            #Standarize values
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
            X_train_std = stdsc.fit_transform(X_train)
            X_test_std = stdsc.transform(X_test)
            X_fromBeyond_std = stdsc.transform(X_fromBeyond)
    
            clf.fit(X_train_std, y_train)
            print('{},{},{},{}'.format(i,repr(j).replace(',',' '),clf.best_score_,clf.score(X_fromBeyond_std, y_fromBeyond)))
            
"""
#Selected best features for files in selected order
#csv_file_features = ((0, 1, 2, 3, 4, 5, 7, 9, 10, 12, 13), (0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13), (1, 2, 3, 4, 7, 8, 9, 10, 11, 12, 13), (0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13), 
#                     (0, 2, 6, 8, 13), (3, 4, 5, 9), (0, 1, 2, 3, 7, 8), (0, 1, 2, 3, 4, 6, 8, 10), 
#            (1, 5, 6, 7, 10, 13), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13), (0, 1, 2, 7, 9, 10, 11, 12, 13), (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))

csv_file_features = ((0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13))
features_index = 0
print('file,train_Score,test_Score')
for i in listdir('.'):
    if (isfile(i) == False) or (i[-3:] != 'csv'):
        continue
    df = read_csv(i)
    
    y = df['Class']
    if __name__ == '__main__':
        X = df.ix[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]]
        features_index += 1
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
        #mmscaler = MinMaxScaler()
        stdsc = StandardScaler()
        X_train_std = stdsc.fit_transform(X_train)
        X_test_std = stdsc.transform(X_test)
        #X_train_mms = mmscaler.fit_transform(X_train)
        #X_test_mms = mmscaler.transform(X_test)
        svm = SVC()
        param_grid = [{'C': [1, 5, 10, 50, 100], 'gamma': ['auto', 0.1, 0.05, 0.01, 0.005, 0.001], 'kernel': ['rbf'], 'shrinking': [True, False], 'decision_function_shape': ['ovr', 'ovo', None], 'random_state': [0, 20, 40]}]
        clf = grid_search.GridSearchCV(svm, param_grid, n_jobs=-1)
        clf.fit(X_train_std, y_train)
        print('{},{},{}'.format(i,clf.score(X_train_std, y_train),clf.score(X_test_std, y_test)))
        print(clf.best_estimator_)
        print(clf.best_score_)
        print(clf.best_params_)
        print(clf.grid_scores_)
        #clf.fit(X_train, y_train)
        #print('{},{},{}'.format(i,clf.score(X_train, y_train),clf.score(X_test, y_test)))


file,train_Score,test_Score
data.csv,0.864285714286,0.858833333333
SVC(C=100, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=0.1, kernel='rbf',
  max_iter=-1, probability=False, random_state=0, shrinking=True,
  tol=0.001, verbose=False)
0.848166666667
{'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}
[mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.64469, std: 0.00590, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.64467, std: 0.00583, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.67743, std: 0.00281, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.67736, std: 0.00285, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.60431, std: 0.00539, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.40883, std: 0.00523, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.40888, std: 0.00520, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.38057, std: 0.00061, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.38060, std: 0.00063, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.33233, std: 0.00145, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.33233, std: 0.00147, params: {'kernel': 'rbf', 'C': 1, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.71971, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.74574, std: 0.00168, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.74567, std: 0.00174, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.68183, std: 0.00294, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.68183, std: 0.00299, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.51167, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.51164, std: 0.00529, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.44300, std: 0.00321, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.44293, std: 0.00318, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.37810, std: 0.00075, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.37810, std: 0.00077, params: {'kernel': 'rbf', 'C': 5, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.74195, std: 0.00188, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.74202, std: 0.00192, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.77252, std: 0.00193, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.77257, std: 0.00194, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.71514, std: 0.00345, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.71517, std: 0.00343, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.55207, std: 0.00634, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.55212, std: 0.00632, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.48298, std: 0.00582, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.38890, std: 0.00280, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.38893, std: 0.00278, params: {'kernel': 'rbf', 'C': 10, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.79933, std: 0.00377, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.82662, std: 0.00253, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.82664, std: 0.00254, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.77050, std: 0.00221, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.77052, std: 0.00220, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.63545, std: 0.00530, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.56443, std: 0.00520, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.56445, std: 0.00517, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.44238, std: 0.00470, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.44240, std: 0.00464, params: {'kernel': 'rbf', 'C': 50, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovo', 'random_state': 40, 'shrinking': False, 'gamma': 0.001}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 'auto'}, mean: 0.82274, std: 0.00272, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 'auto'}, mean: 0.82276, std: 0.00273, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 'auto'}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.1}, mean: 0.84817, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.1}, mean: 0.84814, std: 0.00195, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.1}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.05}, mean: 0.79526, std: 0.00427, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.05}, mean: 0.79529, std: 0.00425, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.05}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.01}, mean: 0.66352, std: 0.00418, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.01}, mean: 0.66352, std: 0.00413, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.01}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.005}, mean: 0.59743, std: 0.00662, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.005}, mean: 0.59743, std: 0.00659, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.005}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 0, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 20, 'shrinking': False, 'gamma': 0.001}, mean: 0.46398, std: 0.00580, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': True, 'gamma': 0.001}, mean: 0.46400, std: 0.00583, params: {'kernel': 'rbf', 'C': 100, 'decision_function_shape': None, 'random_state': 40, 'shrinking': False, 'gamma': 0.001}]

In [5]:
#Test the array of features in each training
init = time()
csv_file_features = [[0,1,2,3,4,5,6,7,8,9,12,13], [0,1,2,3,4,5,6,7,8,9,12,13], [0,1,2,3,4,5,7,8,9,11,12,13], 
                     [1,2,3,4,5,6,7,8,9,10,12]]
features_index = 0
print('Test are made in the following order:')
print('Selected the above the mean features from all three techinques -> [0,1,2,3,4,5,6,7,8,9,12,13]')
print('Typical testors -> [0,1,2,3,4,5,6,7,8,9,12,13]')
print('SBS -> [0,1,2,3,4,5,7,8,9,11,12,13]')
print('Fractal dimension -> [1,2,3,4,5,6,7,8,9,10,12]]\n')
print('Results are given in the following order:')
print('File name, Features, Training score, Test score, SVM parameters\n')

#Iterate trhough the current folder
for i in [f for f in listdir('..\Data') if re.match(r'Recordings_([0][249])*(full)*.csv', f)]:
    
    if __name__ == '__main__':
    
        #Load data file
        df = read_csv("../Data/" + i)
        print('Current File: {} -------->\n'.format(i))
        for j in csv_file_features:
            #Select file features
            y = df['Class']
            X = df.ix[:, j]
            
            #Split data
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
            
            #Standarize values
            stdsc = StandardScaler()
            X_train_std = stdsc.fit_transform(X_train)
            X_test_std = stdsc.transform(X_test)

            #Create SVM and define parameters
            svm = SVC()
            param_grid = [{'C': [1, 10, 100], 'gamma': ['auto', 0.1, 0.01, 0.001],
                           'kernel': ['rbf'], 'shrinking': [False],
                           'decision_function_shape': ['ovr'], 'random_state': [0]}]
            
            #Train the SVM
            clf = grid_search.GridSearchCV(svm, param_grid, n_jobs=7)
            clf.fit(X_train_std, y_train)
            
            #Report testing results
            print('{}, {}, {}, {}, {}\n'.format(i,j,clf.score(X_train_std, y_train),clf.score(X_test_std, y_test),clf.best_params_))
print('\nApproximate running time: {}seconds'.format(time() - init))


Test are made in the following order:
Selected the above the mean features from all three techinques -> [0,1,2,3,4,5,6,7,8,9,12,13]
Typical testors -> [0,1,2,3,4,5,6,7,8,9,12,13]
SBS -> [0,1,2,3,4,5,7,8,9,11,12,13]
Fractal dimension -> [1,2,3,4,5,6,7,8,9,10,12]]

Results are given in the following order:
File name, Features, Training score, Test score, SVM parameters

Current File: Recordings_02.csv -------->

Recordings_02.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.994725274725, 0.993846153846, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_02.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.994725274725, 0.993846153846, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_02.csv, [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13], 0.993406593407, 0.991794871795, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_02.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], 0.996043956044, 0.994871794872, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Current File: Recordings_04.csv -------->

Recordings_04.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.997362637363, 0.995897435897, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_04.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.997362637363, 0.995897435897, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_04.csv, [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13], 0.996483516484, 0.994871794872, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_04.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], 0.982857142857, 0.974358974359, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Current File: Recordings_09.csv -------->

Recordings_09.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 1.0, 0.991794871795, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_09.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 1.0, 0.991794871795, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_09.csv, [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13], 1.0, 0.989743589744, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_09.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], 1.0, 0.991794871795, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Current File: Recordings_full.csv -------->

Recordings_full.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.931076923077, 0.925435897436, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_full.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13], 0.931076923077, 0.925435897436, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_full.csv, [0, 1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13], 0.926241758242, 0.920307692308, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_full.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12], 0.910725274725, 0.905641025641, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': False, 'gamma': 0.1}


Approximate running time: 943.921000004seconds

In [42]:
#Test the array of features in each training
init = time()
csv_file_features = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], [1,2,3,4,5,6,7,8,9,12], 
                     [0,1,4,5,6,7,8,9,12,13], [2,3,4,5,6,7,11], [4,5,6,7,8,9,10,12]]
features_index = 0
print('Test are made in the following order:')
print('All features -> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]')
print('Selected the highest from all three techinques -> [1,2,3,4,5,6,7,8,9,12]')
print('Typical testors -> [0,1,4,5,6,7,8,9,12,13]')
print('SBS -> [2,3,4,5,6,7,11]')
print('Fractal dimension -> [4,5,6,7,8,9,10,12]\n')
print('Results are given in the following order:')
print('File name, Features, Training score, Test score, SVM parameters\n')

#Iterate trhough the current folder
for i in listdir('..\Data\std_samples'):
    
    if __name__ == '__main__':
    
        #Load data file
        df = read_csv("../Data/std_samples/" + i)
        print('Current File: {} -------->\n'.format(i))
        for j in csv_file_features:
            #Select file features
            y = df['Class']
            X = df.ix[:, j]
            
            #Split data
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)

            #Create SVM and define parameters
            svm = SVC()
            param_grid = [{'C': [1, 10, 100], 'gamma': ['auto', 0.1, 0.01, 0.001],
                           'kernel': ['rbf'], 'shrinking': [True, False],
                           'decision_function_shape': ['ovr'], 'random_state': [0]}]
            
            #Train the SVM
            clf = grid_search.GridSearchCV(svm, param_grid, n_jobs=-1)
            clf.fit(X_train, y_train)
            
            #Report testing results
            print('{}, {}, {}, {}, {}\n'.format(i,j,clf.score(X_train, y_train),clf.score(X_test, y_test),clf.best_params_))
print('\nApproximate running time: {}seconds'.format(time() - init))


Test are made in the following order:
All features -> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
Selected the highest from all three techinques -> [1,2,3,4,5,6,7,8,9,12]
Typical testors -> [0,1,4,5,6,7,8,9,12,13]
SBS -> [2,3,4,5,6,7,11]
Fractal dimension -> [4,5,6,7,8,9,10,12]

Results are given in the following order:
File name, Features, Training score, Test score, SVM parameters

Current File: Recordings_02_std_sample.csv -------->

Recordings_02_std_sample.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 0.992366412214, 0.991150442478, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_02_std_sample.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 12], 0.992366412214, 0.991150442478, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_02_std_sample.csv, [0, 1, 4, 5, 6, 7, 8, 9, 12, 13], 0.992366412214, 0.982300884956, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_02_std_sample.csv, [2, 3, 4, 5, 6, 7, 11], 0.958015267176, 0.955752212389, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_02_std_sample.csv, [4, 5, 6, 7, 8, 9, 10, 12], 0.988549618321, 0.982300884956, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Current File: Recordings_04_std_sample.csv -------->

Recordings_04_std_sample.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 0.977099236641, 0.973451327434, {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_04_std_sample.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 12], 0.969465648855, 0.929203539823, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_04_std_sample.csv, [0, 1, 4, 5, 6, 7, 8, 9, 12, 13], 0.988549618321, 0.964601769912, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_04_std_sample.csv, [2, 3, 4, 5, 6, 7, 11], 0.980916030534, 0.938053097345, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_04_std_sample.csv, [4, 5, 6, 7, 8, 9, 10, 12], 0.973282442748, 0.938053097345, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Current File: Recordings_09_std_sample.csv -------->

Recordings_09_std_sample.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 0.996183206107, 0.982300884956, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}

Recordings_09_std_sample.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 12], 0.996183206107, 0.973451327434, {'kernel': 'rbf', 'C': 10, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_09_std_sample.csv, [0, 1, 4, 5, 6, 7, 8, 9, 12, 13], 0.984732824427, 0.982300884956, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.01}

Recordings_09_std_sample.csv, [2, 3, 4, 5, 6, 7, 11], 0.969465648855, 0.911504424779, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Recordings_09_std_sample.csv, [4, 5, 6, 7, 8, 9, 10, 12], 0.988549618321, 0.920353982301, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 0.1}

Current File: Recordings_full_std_sample.csv -------->

Recordings_full_std_sample.csv, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 0.897379912664, 0.659898477157, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_full_std_sample.csv, [1, 2, 3, 4, 5, 6, 7, 8, 9, 12], 0.836244541485, 0.578680203046, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_full_std_sample.csv, [0, 1, 4, 5, 6, 7, 8, 9, 12, 13], 0.827510917031, 0.58883248731, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_full_std_sample.csv, [2, 3, 4, 5, 6, 7, 11], 0.700873362445, 0.441624365482, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}

Recordings_full_std_sample.csv, [4, 5, 6, 7, 8, 9, 10, 12], 0.786026200873, 0.502538071066, {'kernel': 'rbf', 'C': 100, 'decision_function_shape': 'ovr', 'random_state': 0, 'shrinking': True, 'gamma': 'auto'}


Approximate running time: 70.5390000343seconds

In [33]:
[f for f in listdir('..\Data') if re.match(r'Recordings_([0][249])*(full)*.csv', f)]
#[f for f in listdir('..\Data')]


Out[33]:
['Recordings_02.csv',
 'Recordings_04.csv',
 'Recordings_09.csv',
 'Recordings_full.csv']

In [1]:
from pandas import read_csv

from itertools import combinations
from time import time
from sklearn.svm import SVC
import re
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn import grid_search
from os import listdir
from os.path import isfile
import pandas as pd
import numpy as np
from os import listdir
from os import remove
from os import system
from os.path import isfile, join
import sys
import scipy
from sklearn.cross_validation import ShuffleSplit

In [6]:
#Test the array of features in each training
if __name__ == '__main__':
    
    csv_file_features = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 
                         [0, 1, 2, 5, 8, 9, 12], 
                         [0, 2, 4, 5, 6, 7, 8, 11, 13], 
                         [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13]]
    features_index = 0
    print('Order of results')
    print('File name, Training score, Test score, SVM parameters\n')
    #C_range = np.logspace(-2, 10, 13) #[0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000]
    C_range = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
    #gamma_range = np.logspace(-9, 3, 13)
    gamma_range = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
    path = "../Data"
    files = [f for f in listdir(path) if isfile(join(path, f))]

    for j in csv_file_features:
            
        stdsc = StandardScaler()
            #Load data file
        df = read_csv( 
            'C:\Users\carlos.martinez\Google Drive\Thesis experiments and results\Data\Recordings_00.csv')
        df_sample = read_csv( 
            'C:\Users\carlos.martinez\Google Drive\Thesis experiments and results\Data\Recordings_00_sample_2202P_c.csv')
            
            #Select file features
            #y = df['Class']
            #X = df.ix[:, j]
        y_train = df_sample['Class']
        X_train = df_sample.ix[:, j]
            
        y_test = df['Class']
        X_test = df.ix[:, j]
        #Split data
        cross_validation.cross_val_score(model, X, y, scoring='wrong_choice')
        #X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
        X_std = stdsc.fit_transform(X)
        #Create SVM and define parameters
        svm = SVC()
        param_grid = [{'C': C_range, 
                        'gamma': gamma_range, 
                        'kernel': ['rbf'], 
                        'shrinking': [False], 
                        'decision_function_shape': ['ovr'], 
                        'random_state': [0]}]
            
        #Train the SVM
        init = time()
        clf = grid_search.GridSearchCV(svm, param_grid, n_jobs=-1)
        clf.fit(X_train_std, y_train)
            
        #Report testing results
        print('{}, {}, {}, {}'.format(i,clf.score(X_train_std, y_train),clf.score(X_test_std, y_test),clf.best_params_))
        print('For {} -> Approximate running time: {} seconds\n'.format(j, time() - init))


Order of results
File name, Training score, Test score, SVM parameters

---------------------------------------------------------------------------
IOError                                   Traceback (most recent call last)
<ipython-input-6-989411cbe102> in <module>()
     23             'C:\Users\carlos.martinez\Google Drive\Thesis experiments and results\Data\Recordings_00.csv')
     24         df_sample = read_csv( 
---> 25             'C:\Users\carlos.martinez\Google Drive\Thesis experiments and results\Data\Recordings_00_sample_2202P_c.csv')
     26 
     27             #Select file features

C:\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in parser_f(filepath_or_buffer, sep, dialect, compression, doublequote, escapechar, quotechar, quoting, skipinitialspace, lineterminator, header, index_col, names, prefix, skiprows, skipfooter, skip_footer, na_values, true_values, false_values, delimiter, converters, dtype, usecols, engine, delim_whitespace, as_recarray, na_filter, compact_ints, use_unsigned, low_memory, buffer_lines, warn_bad_lines, error_bad_lines, keep_default_na, thousands, comment, decimal, parse_dates, keep_date_col, dayfirst, date_parser, memory_map, float_precision, nrows, iterator, chunksize, verbose, encoding, squeeze, mangle_dupe_cols, tupleize_cols, infer_datetime_format, skip_blank_lines)
    496                     skip_blank_lines=skip_blank_lines)
    497 
--> 498         return _read(filepath_or_buffer, kwds)
    499 
    500     parser_f.__name__ = name

C:\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _read(filepath_or_buffer, kwds)
    273 
    274     # Create the parser.
--> 275     parser = TextFileReader(filepath_or_buffer, **kwds)
    276 
    277     if (nrows is not None) and (chunksize is not None):

C:\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in __init__(self, f, engine, **kwds)
    588             self.options['has_index_names'] = kwds['has_index_names']
    589 
--> 590         self._make_engine(self.engine)
    591 
    592     def _get_options_with_defaults(self, engine):

C:\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in _make_engine(self, engine)
    729     def _make_engine(self, engine='c'):
    730         if engine == 'c':
--> 731             self._engine = CParserWrapper(self.f, **self.options)
    732         else:
    733             if engine == 'python':

C:\Anaconda2\lib\site-packages\pandas\io\parsers.pyc in __init__(self, src, **kwds)
   1101         kwds['allow_leading_cols'] = self.index_col is not False
   1102 
-> 1103         self._reader = _parser.TextReader(src, **kwds)
   1104 
   1105         # XXX

pandas\parser.pyx in pandas.parser.TextReader.__cinit__ (pandas\parser.c:3246)()

pandas\parser.pyx in pandas.parser.TextReader._setup_parser_source (pandas\parser.c:6111)()

IOError: File C:\Users\carlos.martinez\Google Drive\Thesis experiments and results\Data\Recordings_00_sample_2202P_c.csv does not exist

In [3]:
from sklearn import grid_search
from sklearn.cross_validation import StratifiedShuffleSplit
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from time import time

import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')

In [2]:
#Test the array of features in each training
if __name__ == '__main__':
    
    csv_file_features = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 
                         [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13]]
    
    estimators_array = []
    
    print('Order of results')
    print('Training score, Test score, Time, Features, SVM parameters\n')
    
    C_range = [0.01, 0.1, 1, 10, 100]
    gamma_range = [0.01, 0.1, 1, 10, 100]

    #Test for all the features sets
    for i in csv_file_features:
        stdsc = StandardScaler()
        df = pd.read_csv("../../Dataset/Train/EEG_Train_Sorted.csv")

        #Separate Class labels anda data
        X = df.ix[:, i]
        y = df['Class']
        
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
        
        #Standarize data
        X_train_std = stdsc.fit_transform(X_train)
        X_test_std = stdsc.transform(X_test)
        
        
        #Create SVM and define parameters
        svm = SVC()
        param_grid = [{'C': C_range, 
                        'gamma': gamma_range, 
                        'kernel': ['rbf'], 
                        'decision_function_shape': ['ovr'], 
                        'random_state': [0]}]
            
        #Set Grid Params
        init = time()
        gscv = grid_search.GridSearchCV(svm, 
                                       param_grid, 
                                       n_jobs=6, 
                                       cv=StratifiedShuffleSplit(y=y_train,  
                                                                 n_iter=5, 
                                                                 test_size=0.4, 
                                                                 random_state=0))
        #Test classifier
        gscv.fit(X_train_std, y_train)
        
        #Save our estimator
        estimators_array.append(gscv)
        
        #Report testing results
        print('{:.5f}, {:.5f}, {:.5f}s, {}, {}'.format(gscv.best_score_, gscv.score(X_test_std, y_test), time() - init, i, gscv.best_params_))


Order of results
Training score, Test score, Time, Features, SVM parameters

C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\hashing.py:197: DeprecationWarning: Changing the shape of non-C contiguous array by
descriptor assignment is deprecated. To maintain
the Fortran contiguity of a multidimensional Fortran
array, use 'a.T.view(...).T' instead
  obj_bytes_view = obj.view(self.np.uint8)
---------------------------------------------------------------------------
KeyboardInterrupt                         Traceback (most recent call last)
<ipython-input-2-fe75aafc9975> in <module>()
     47                                                                  random_state=0))
     48         #Test classifier
---> 49         gscv.fit(X_train_std, y_train)
     50 
     51         #Save our estimator

C:\Anaconda3\lib\site-packages\sklearn\grid_search.py in fit(self, X, y)
    802 
    803         """
--> 804         return self._fit(X, y, ParameterGrid(self.param_grid))
    805 
    806 

C:\Anaconda3\lib\site-packages\sklearn\grid_search.py in _fit(self, X, y, parameter_iterable)
    551                                     self.fit_params, return_parameters=True,
    552                                     error_score=self.error_score)
--> 553                 for parameters in parameter_iterable
    554                 for train, test in cv)
    555 

C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in __call__(self, iterable)
    808                 # consumption.
    809                 self._iterating = False
--> 810             self.retrieve()
    811             # Make sure that we get a last message telling us we are done
    812             elapsed_time = time.time() - self._start_time

C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
    755                     # a working pool as they expect.
    756                     self._initialize_pool()
--> 757                 raise exception
    758 
    759     def __call__(self, iterable):

C:\Anaconda3\lib\site-packages\sklearn\externals\joblib\parallel.py in retrieve(self)
    725                 job = self._jobs.pop(0)
    726             try:
--> 727                 self._output.extend(job.get())
    728             except tuple(self.exceptions) as exception:
    729                 # Stop dispatching any new job in the async callback thread

C:\Anaconda3\lib\multiprocessing\pool.py in get(self, timeout)
    600 
    601     def get(self, timeout=None):
--> 602         self.wait(timeout)
    603         if not self.ready():
    604             raise TimeoutError

C:\Anaconda3\lib\multiprocessing\pool.py in wait(self, timeout)
    597 
    598     def wait(self, timeout=None):
--> 599         self._event.wait(timeout)
    600 
    601     def get(self, timeout=None):

C:\Anaconda3\lib\threading.py in wait(self, timeout)
    547             signaled = self._flag
    548             if not signaled:
--> 549                 signaled = self._cond.wait(timeout)
    550             return signaled
    551 

C:\Anaconda3\lib\threading.py in wait(self, timeout)
    291         try:    # restore state no matter what (e.g., KeyboardInterrupt)
    292             if timeout is None:
--> 293                 waiter.acquire()
    294                 gotit = True
    295             else:

KeyboardInterrupt: 

In [3]:
estimators_array[0]


Out[3]:
GridSearchCV(cv=StratifiedShuffleSplit(labels=[4 3 ..., 1 0], n_iter=5, test_size=0.4, random_state=0),
       error_score='raise',
       estimator=SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape=None, degree=3, gamma='auto', kernel='rbf',
  max_iter=-1, probability=False, random_state=None, shrinking=True,
  tol=0.001, verbose=False),
       fit_params={}, iid=True, n_jobs=6,
       param_grid=[{'kernel': ['rbf'], 'C': [0.01, 0.1, 1, 10, 100], 'random_state': [0], 'decision_function_shape': ['ovr'], 'gamma': [0.01, 0.1, 1, 10, 100]}],
       pre_dispatch='2*n_jobs', refit=True, scoring=None, verbose=0)

In [11]:
k = 5, r_state = 200991 c = [0.03125, 0.125, 0.5, 2, 8, 32], gamma = [0.03125, 0.125, 0.5, 2, 8, 32]
Order of results
Training score, Test score, Time, Features, SVM parameters

0.99602, 1331.20500s, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}
0.95958, 917.59700s, [0, 1, 2, 5, 8, 9, 12], {'kernel': 'rbf', 'C': 2, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 32}
0.98192, 961.00000s, [0, 2, 4, 5, 6, 7, 8, 11, 13], {'kernel': 'rbf', 'C': 32, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}
0.99495, 1112.42700s, [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}


  File "<ipython-input-11-70c8c834012b>", line 1
    Order of results
           ^
SyntaxError: invalid syntax

In [ ]:
k = 3, r_state = 200991 c = [0.03125, 0.125, 0.5, 2, 8, 32], gamma = [0.03125, 0.125, 0.5, 2, 8, 32]
Order of results
Training score, Test score, Time, Features, SVM parameters

0.99611, 783.30900s, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}
0.95867, 574.71500s, [0, 1, 2, 5, 8, 9, 12], {'kernel': 'rbf', 'C': 2, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 32}
0.98145, 575.46000s, [0, 2, 4, 5, 6, 7, 8, 11, 13], {'kernel': 'rbf', 'C': 32, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}
0.99529, 721.32900s, [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 200991, 'decision_function_shape': 'ovr', 'gamma': 8}

In [ ]:
#Test the array of features in each training
if __name__ == '__main__':
    
    csv_file_features = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 
                         [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13]]
    
    estimators_array = []
    
    print('Order of results')
    print('Training score, Test score, Time, Features, SVM parameters\n')
    
    C_range = [0.03125, 0.125, 0.5, 2, 8, 32]
    gamma_range = [0.03125, 0.125, 0.5, 2, 8, 32]

    #Test for all the features sets
    for i in csv_file_features:
        stdsc = StandardScaler()
        df = pd.read_csv("../Data/Recordings.csv")

        #Separate Class labels anda data
        y = df['Class']
        X = df.ix[:, i]
        
        #Standarize data
        X_std = stdsc.fit_transform(X)
        
        #Create SVM and define parameters
        svm = SVC()
        param_grid = [{'C': C_range, 
                        'gamma': gamma_range, 
                        'kernel': ['rbf'], 
                        'decision_function_shape': ['ovr'], 
                        'random_state': [0]}]
            
        #Set Grid Params
        init = time()
        gscv = grid_search.GridSearchCV(svm, 
                                       param_grid, 
                                       n_jobs=-1, 
                                       cv=StratifiedShuffleSplit(y=y,  
                                                                 n_iter=5, 
                                                                 test_size=0.34, 
                                                                 random_state=0))
        #Test classifier
        gscv.fit(X_std, y)
        
        #Save our estimator
        estimators_array.append(gscv)
        
        #Report testing results
        print('{:.5f}, {:.5f}s, {}, {}'.format(gscv.best_score_, time() - init, i, gscv.best_params_))
231, 218

In [83]:
#Test the array of features in each training
if __name__ == '__main__':
    
    #csv_file_features = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], 
    #                     [0, 1, 2, 5, 8, 9, 12], 
    #                     [0, 2, 4, 5, 6, 7, 8, 11, 13], 
    #                     [0, 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13], 
    #                     [0,1,2,4,5,7,8,10]]
    
    csv_file_features = [[1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13]]
                         #[1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13]]
    
    estimators_array = []
    
    print('Order of results')
    print('Training score, Test score, Time, Features, SVM parameters\n')
    
    C_range = [0.125, 0.5, 2, 8, 32, 128]
    gamma_range = [0.03125, 0.125, 0.5, 2, 8]
    #C_range = [0.01, 0.1, 1, 10, 100]
    #gamma_range = [0.01, 0.1, 1, 10, 100]
    
    #Test for all the features sets
    for i in csv_file_features:
        stdsc = StandardScaler()
        df = pd.read_csv("../Data/The Tesis EEG/Train/EEG_Train_Sorted.csv")

        #Separate Class labels anda data
        X = df.ix[:, i]
        y = df['Class']
        
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
        
        #Standarize data
        X_train_std = stdsc.fit_transform(X_train)
        X_test_std = stdsc.transform(X_test)
        
        
        #Create SVM and define parameters
        svm = SVC()
        param_grid = [{'C': C_range, 
                        'gamma': gamma_range, 
                        'kernel': ['rbf'], 
                        'decision_function_shape': ['ovr'], 
                        'random_state': [0]}]
            
        #Set Grid Params
        init = time()
        gscv = grid_search.GridSearchCV(svm, 
                                       param_grid, 
                                       n_jobs=7, 
                                       cv=StratifiedShuffleSplit(y=y_train,  
                                                                 n_iter=3, 
                                                                 test_size=0.25, 
                                                                 random_state=0))
        #Test classifier
        gscv.fit(X_train_std, y_train)
        
        #Save our estimator
        estimators_array.append(gscv)
        
        #Report testing results
        print('{:.5f}, {:.5f}, {:.5f}s, {}, {}'.format(gscv.best_score_, gscv.score(X_test_std, y_test), time() - init, i, gscv.best_params_))
        print(gscv.best_estimator_)


Order of results
Training score, Test score, Time, Features, SVM parameters

0.97312, 0.97568, 171.66500s, [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 0, 'decision_function_shape': 'ovr', 'gamma': 2}
SVC(C=8, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=2, kernel='rbf',
  max_iter=-1, probability=False, random_state=0, shrinking=True,
  tol=0.001, verbose=False)

In [74]:
gscv.best_estimator_


Out[74]:
SVC(C=8, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=2, kernel='rbf',
  max_iter=-1, probability=False, random_state=0, shrinking=True,
  tol=0.001, verbose=False)

In [ ]:
Order of results
Training score, Test score, Time, Features, SVM parameters

0.62833, 0.71910, 170.60600s, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 10, 'random_state': 0, 'decision_function_shape': 'ovr', 'gamma': 1}
0.57064, 0.63450, 158.07400s, [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 1, 'random_state': 0, 'decision_function_shape': 'ovr', 'gamma': 1}

In [86]:
#kp = pd.read_csv("../Data/The Tesis EEG/Test/EEG_Train_Filtered_0.5_30Hz_l4.csv")
kp = pd.read_csv("../Data/The Tesis EEG/Test/EEG_Test_Sorted.csv")

#df_p = pd.read_csv("../Data/EEG_00_Sorted.csv")
#X_11 = df_p.ix[:,[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]]
X = kp.ix[:,[1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13]]
#X_22 = df_p.ix[:, [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13]] 
#X_2 = kp.ix[:, [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13]]
y = kp['Class']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
#X2_train, X2_test, y2_train, y2_test = train_test_split(X_2, y, test_size=0.25, random_state=0)
stdsc = StandardScaler()
#stdsc_2 = StandardScaler()

X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
#X2_train_std = stdsc_2.fit_transform(X2_train)
#X2_test_std = stdsc_2.transform(X2_test)

In [65]:
len(X2_train_std)


Out[65]:
18750

In [1]:
print(estimators_array[0].score(X_test_std, y_test))
#print(estimators_array[1].score(X2_test_std, y2_test))


---------------------------------------------------------------------------
NameError                                 Traceback (most recent call last)
<ipython-input-1-973a84ad576c> in <module>()
----> 1 print(estimators_array[0].score(X_test_std, y_test))
      2 #print(estimators_array[1].score(X2_test_std, y2_test))

NameError: name 'estimators_array' is not defined

In [16]:
from sklearn import grid_search
from sklearn.cross_validation import StratifiedShuffleSplit
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from time import time

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

from collections import Counter
from sklearn import svm, datasets
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix

In [62]:
stdsc = StandardScaler()
df = pd.read_csv("../Data/The Tesis EEG/Train/EEG_Train_Filtered_0.5_30Hz_l4.csv")

        #Separate Class labels anda data
X = df.ix[:, [1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13]]
y = df['Class']
        
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
        
#Standarize data
X_train_std = stdsc.fit_transform(X_train)
X_test_std = stdsc.transform(X_test)
        
        
#Create SVM and define parameters
svm = SVC(C=2, cache_size=200, class_weight=None, coef0=0.0,
  decision_function_shape='ovr', degree=3, gamma=2, kernel='rbf',
  max_iter=-1, probability=False, random_state=0, shrinking=True,
  tol=0.001, verbose=False)
        #Test classifier
svm.fit(X_train_std, y_train)
svm.score(X_test_std, y_test)
y_pred = svm.predict(X_test_std)

In [63]:
%matplotlib inline



def plot_confusion_matrix(cm, res, names, title, cmap=plt.cm.Blues):
    results = Counter(y_test)
    no_values = []
    for _, value in results.iteritems():
        no_values.append(value)
    no_values = np.array(no_values)
    conf_mat = np.zeros((len(no_values),len(no_values)))
    conf_mat = conf_mat + cm
    conf_mat = conf_mat.T
    avg_acc = np.trace(conf_mat)/np.sum(no_values)
    conf_mat_norm = conf_mat/no_values # Normalizing the confusion matrix
    conf_mat2 = np.around(conf_mat_norm,decimals=2) # rounding to display in figure
    conf_mat2 = conf_mat2.T
    plt.imshow(conf_mat2, interpolation='nearest', vmax=1.0, cmap=plt.get_cmap('Blues'))
    plt.title(title + '\nPromedio de la precision: {}'.format(avg_acc))
    plt.colorbar()
    for x in xrange(len(names)):
        for y in xrange(len(names)):
            plt.annotate(str(conf_mat2[x][y]),xy=(y,x),ha='center',va='center')
    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)
    plt.tight_layout()
    plt.ylabel('Clasificacion correcta')
    plt.xlabel('Clasificacion estimada')
    #plt.show()
    
    
names = ['Fijo', 'Avanzar', 'Retroceder', 'Izquierda', 'Derecha']
#y_pred = svm.predict(X_test_std)    
#y_2_pred = estimators_array[1].predict(X2_test_std)    
cm = confusion_matrix(y_test, y_pred)
#cm2 = confusion_matrix(y2_test, y_2_pred)
plt.figure(figsize=(12,5))
#plt.subplot(121)
plot_confusion_matrix(cm, y_test, names, title='Matriz de confusion\nFiltrado [Si], Seleccion de caracteristicas [Si]')
#plt.show()
#plt.subplot(122)
#plt.figure()
#plot_confusion_matrix(cm2, names, title='Matriz de confusion (Filtrado, con seleccion de caracteristicas)')
plt.show()



In [ ]:
Order of results
Training score, Test score, Time, Features, SVM parameters

0.97875, 0.98890, 454.49500s, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 32, 'random_state': 0, 'decision_function_shape': 'ovr', 'gamma': 0.5}
0.95201, 0.97300, 462.31800s, [1, 2, 4, 6, 7, 8, 9, 10, 11, 12, 13], {'kernel': 'rbf', 'C': 8, 'random_state': 0, 'decision_function_shape': 'ovr', 'gamma': 2}

In [55]:
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.cross_validation import train_test_split
from sklearn.metrics import confusion_matrix

"""
def plot_confusion_matrix(cm, names, title, cmap=plt.cm.Blues):
    #plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.imshow(cm, interpolation='nearest')
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)
    plt.tight_layout()
    plt.ylabel('Clasificacion correcta')
    plt.xlabel('Clasificacion estimada')
    #plt.show()
"""
def plot_confusion_matrix(cm, res, names, title, cmap=plt.cm.Blues):
    results = Counter(y_test)
    no_values = []
    for _, value in results.iteritems():
        no_values.append(value)
    no_values = np.array(no_values)
    conf_mat = np.zeros((len(no_values),len(no_values)))
    conf_mat = conf_mat + cm
    conf_mat = conf_mat.T
    avg_acc = np.trace(conf_mat)/np.sum(no_values)
    conf_mat_norm = conf_mat/no_values # Normalizing the confusion matrix
    conf_mat2 = np.around(conf_mat_norm,decimals=2) # rounding to display in figure
    conf_mat2 = conf_mat2.T
    plt.imshow(conf_mat2, interpolation='nearest', vmax=1.0, cmap=plt.get_cmap('Blues'))
    plt.title(title)
    plt.colorbar()
    for x in xrange(len(names)):
        for y in xrange(len(names)):
            plt.annotate(str(conf_mat2[x][y]),xy=(y,x),ha='center',va='center')
    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)
    plt.tight_layout()
    plt.ylabel('Clasificacion correcta')
    plt.xlabel('Clasificacion estimada')

names = ['Fijo', 'Avanzar', 'Retroceder', 'Izquierda', 'Derecha']
y_test = [0, 2, 2, 2, 0, 1, 4, 4, 0, 3, 4, 2, 3, 4, 2, 0, 1, 4, 0, 1, 1, 3, 4, 2, 3, 0, 4, 4, 3, 1, 0, 3, 4, 4, 0, 2, 1, 1, 1, 1, 4, 2, 2, 3, 2, 2, 0, 1, 2, 0, 0, 4, 4, 3, 1, 0, 3, 4, 4, 0, 2, 1, 1, 1, 1, 4, 2, 2, 3, 2, 2, 0, 1, 2, 0]
y_pred = [0, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 0, 4, 4, 4, 4, 4, 4, 4, 1, 4, 2, 2, 4, 1, 3, 4, 4, 2, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 1, 2, 4, 3, 2, 2, 4, 4, 2, 4, 4, 1, 2, 4, 4]
tot = 0
for i in zip(y_test, y_pred):
    if(i[0] == i[1]):
        tot += 1
tot = tot / 75.0
cm = confusion_matrix(y_test, y_pred)

plt.figure(figsize=(12,5))

plot_confusion_matrix(cm, y_test, names, title='Matriz de confusion\nFiltrado [No], Seleccion de caracteristicas [No]\nPrecision: {}'.format(tot))

plt.show()



In [ ]: