In [1]:
%pylab inline
In [2]:
import pandas as pd
import seaborn as sns
from ficus import FigureManager
In [12]:
data = pd.read_csv('storage_bench_results.txt', skipinitialspace=True)
In [13]:
data.columns
Out[13]:
In [16]:
#with FigureManager(show=True, figsize=(12,8)) as (fig, ax):
sns.catplot(x='storage_type', y='time', hue='n_hashes', col='bench', kind='swarm', data=data,)
Out[16]:
In [25]:
data = pd.read_csv('storage_bench_results_2.txt', skipinitialspace=True)
In [26]:
sns.catplot(x='storage_type', y='time', hue='n_hashes', col='bench', kind='swarm', data=data,)
Out[26]:
In [77]:
data = pd.read_csv('storage_bench_results_3.txt', skipinitialspace=True)
In [78]:
sns.catplot(x='storage_type', y='time', hue='n_hashes', col='bench', kind='swarm', data=data,)
Out[78]:
In [79]:
comp = data.pivot_table(index=['storage_type', 'n_hashes'], columns='bench', values=['time', 'storage_type']).reset_index()
comp.columns = [' '.join(col).strip() for col in comp.columns.values]
In [80]:
comp
Out[80]:
In [82]:
sns.relplot(x='time insert', y='time insert_and_query', style='n_hashes', hue='storage_type', data=comp)
Out[82]:
In [84]:
sns.relplot(x='time insert', y='time insert_second', style='n_hashes', hue='storage_type', data=comp)
Out[84]:
In [ ]: