In [1]:
import wisps
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import glob
import numba
%matplotlib inline
In [2]:
fold='/users/caganze/research/wisps/spectra/trash/*.jpeg'
In [3]:
spect=glob.glob(fold)
In [4]:
len(spect)
Out[4]:
In [5]:
bools=[not (('AM' in x) or ('PM' in x)) for x in spect]
In [6]:
spectrs=np.array(spect)[np.array(bools)]
In [7]:
trash_ids=[x.split('/')[-1].split('.jpeg')[0].split(' ')[0] for x in spectrs]
In [8]:
trash_ids=np.unique(trash_ids)
In [9]:
len(trash_ids)
Out[9]:
In [10]:
def proper_grism_id(n):
if n.startswith('par'):
n=n.replace('_', '-', 1)
if not n.startswith('par'):
n=n.replace('_', '-', 2)
return n.lower()
In [11]:
propids=[proper_grism_id(x) for x in trash_ids]
In [12]:
len(propids)
Out[12]:
In [13]:
df=pd.read_hdf(wisps.COMBINED_PHOTO_SPECTRO_FILE, key='all_phot_spec_data')
In [14]:
df2=wisps.datasets['candidates']
In [15]:
df2['grism_id']=df2[0].values
In [16]:
len(df2)
Out[16]:
In [17]:
df3=df[(df.grism_id.isin(propids)) & (~ (df.grism_id.isin(df2.grism_id)))]
In [18]:
len(df3)
Out[18]:
In [19]:
#
In [20]:
#lowsnr.shape
In [21]:
#
dfn=df3
In [22]:
#dfn=pd.concat([df3, lowsnr]).reset_index(drop=True)
In [23]:
len(dfn)
Out[23]:
In [24]:
dfn.to_pickle(wisps.OUTPUT_FILES+'/trash.pkl')
In [25]:
#wisps.datasets['stars']
In [ ]: