In [1]:
import arviz as az
import pandas as pd
import pystan
import seaborn as sns
In [2]:
import numpy as np
import matplotlib.pyplot as plt
In [3]:
%matplotlib inline
In [4]:
model = pystan.StanModel(file='galactic.stan')
In [5]:
n=10
In [6]:
data= {
'nobs': n,
'robs':10**np.random.uniform(low=-1, high=4, size=n)[0],
'zobs':10**np.random.uniform(low=-1, high=4, size=n)[0]
}
In [7]:
gaus_data= {
'N':n,
'x': 10**np.random.uniform(low=-1, high=4, size=n),
'y':10**np.random.uniform(low=-1, high=4, size=n),
}
In [8]:
g_model = pystan.StanModel(file='gaussian.stan')
In [9]:
fit = g_model.sampling(data=gaus_data)
In [10]:
az.plot_trace(fit, var_names=['alpha'])
Out[10]:
In [17]:
fit['alpha']
Out[17]:
In [25]:
#plt.plot(gaus_data['x'], gaus_data['y'], '.')
plt.plot(fit['rho'], fit['alpha'], '.')
Out[25]:
In [ ]: