In [4]:
import wisps
import wisps.simulations as wispsim
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import bisect, numba
from tqdm import tqdm
%matplotlib inline
In [2]:
LF=wispsim.LUMINOSITY_FUCTION
LFDES=wispsim.DES_LUMINOSITY_FUCTION
MAGLIMITS=wispsim.MAG_LIMITS
PNTS=wispsim.OBSERVED_POINTINGS
CANDS=wisps.datasets['candidates']
DIST_DATAFRAME=pd.DataFrame.from_records([x.samples for x in wispsim.OBSERVED_POINTINGS])
SIMULATED_DIST=wispsim.simulate_spts()
In [3]:
def drop_nan(x):
x=np.array(x)
return x[(~np.isnan(x)) & (~np.isinf(x)) ]
In [4]:
fig, ax=plt.subplots()
for idx in tqdm(np.arange(13)):
spts=drop_nan(SIMULATED_DIST['spts'][idx][:,0])
#ages=drop_nan(SIMULATED_DIST['ages'][idx][:,0])
h=plt.hist(spts, histtype='step', bins='auto')
In [5]:
fig, ax=plt.subplots()
for idx in tqdm(np.arange(13)):
spts=drop_nan(SIMULATED_DIST['ages'][idx])
#ages=drop_nan(SIMULATED_DIST['ages'][idx][:,0])
h=plt.hist(spts, histtype='step', bins='auto')
In [139]:
fig, ax=plt.subplots()
spt_dists={}
import matplotlib
from matplotlib import cm
norm = matplotlib.colors.Normalize(vmin=20., vmax=37.0)
for idx in tqdm(np.arange(20., 37.)):
spt_dists[idx]=np.log10(np.concatenate(DIST_DATAFRAME[idx].values))
h=ax.hist(np.log10(np.concatenate(DIST_DATAFRAME[idx].values)),color=cm.viridis(norm(idx)),\
histtype='step', bins='auto', alpha=0.5,
normed=True)
sm = plt.cm.ScalarMappable(cmap=cm.viridis, norm=norm)
sm.set_array([])
br=plt.colorbar(sm, ticks=np.arange(20., 40., 5 ))
br.set_ticklabels(['L0', 'L5', 'T0', 'T5', 'Y0'])
ax.set_xlabel('Log distance (pc)')
ax.set_ylabel('Density')
plt.minorticks_on()
plt.tight_layout()
ax.yaxis.set_ticks_position('both')
ax.xaxis.set_ticks_position('both')
plt.savefig(wisps.OUTPUT_FIGURES+'/distance_distribution.pdf')
In [5]:
from astropy.coordinates import SkyCoord
import astropy.units as u
In [7]:
pnts=wisps.OBSERVED_POINTINGS
In [8]:
#big_skycoord= []
In [9]:
#for p in pnts:
# big_skycoord.append(SkyCoord(ra=p.coord.ra, dec=p.coord.dec, distance=np.concatenate([p.samples[k] for k in p.samples.keys()])*u.pc))
In [10]:
#skcoord=SkyCoord(big_skycoord)
In [11]:
#x, y, z=skcoord.galactic.cartesian.xyz
In [12]:
#r=(x**2+y**2)**0.5
In [13]:
import seaborn as sns
In [1]:
import wisps
import numpy as np
from wisps.simulations import custom_volume_correction, Pointing
from wisps import get_distance
from astropy.coordinates import SkyCoord
import astropy.units as u
import matplotlib.pyplot as plt
%matplotlib inline
In [2]:
wisps.MAG_LIMITS['wisps']
Out[2]:
In [3]:
coord=SkyCoord(ra=50*u.deg, dec=50*u.deg)
In [4]:
p=Pointing(coord=coord)
In [5]:
p.survey='wisps'
p.mag_limits=wisps.MAG_LIMITS['wisps']
p.compute_distance_limits()
p.computer_volume()
In [6]:
plt.hist(p.random_draw(1000, 100, 1000 ))
Out[6]:
In [ ]:
p.cdf(100, 1000)
In [ ]: