In [1]:
from keras.datasets import cifar10
from keras.models import load_model
import numpy as np

from IPython import display
import matplotlib.pyplot as plt

% matplotlib inline
% config InlineBackend.figure_format = 'retina'


Using TensorFlow backend.

In [2]:
noise_size = 100

for image_class in range(10):
    for epoch in [500]:
        generator = load_model("networks/gen" + str(image_class) + "-" + str(epoch) + ".h5")

        noise = np.random.uniform(0, 1, size=[10, noise_size])
        generated_images = generator.predict(noise)

        print "Class {:d} generated images at epoch {:d}:".format(image_class, epoch)

        plt.figure(figsize=(10, 4))
        for i in range(generated_images.shape[0]):
            plt.subplot(2, 5, i+1)
            img = generated_images[i,:,:,:]
            plt.imshow(img)
            plt.axis('off')
        plt.tight_layout()
        plt.show()


Class 0 generated images at epoch 500:
Class 1 generated images at epoch 500:
Class 2 generated images at epoch 500:
Class 3 generated images at epoch 500:
Class 4 generated images at epoch 500:
Class 5 generated images at epoch 500:
Class 6 generated images at epoch 500:
Class 7 generated images at epoch 500:
Class 8 generated images at epoch 500:
Class 9 generated images at epoch 500:

In [ ]: