In [1]:
from keras.datasets import cifar10
from keras.models import load_model
import numpy as np
from IPython import display
import matplotlib.pyplot as plt
% matplotlib inline
% config InlineBackend.figure_format = 'retina'
In [2]:
noise_size = 100
for image_class in range(10):
for epoch in [500]:
generator = load_model("networks/gen" + str(image_class) + "-" + str(epoch) + ".h5")
noise = np.random.uniform(0, 1, size=[10, noise_size])
generated_images = generator.predict(noise)
print "Class {:d} generated images at epoch {:d}:".format(image_class, epoch)
plt.figure(figsize=(10, 4))
for i in range(generated_images.shape[0]):
plt.subplot(2, 5, i+1)
img = generated_images[i,:,:,:]
plt.imshow(img)
plt.axis('off')
plt.tight_layout()
plt.show()
In [ ]: