https://github.com/karpathy/char-rnn 项目是一个开源的文本自动生成器,支持生成各种类型文本。
该项目的主要思路就是采用多层的LSTM训练RNN。
首先网络采用字符模型,即输入的是字符向量,输出是字符向量+softmax。
In [1]:
vocb = torch.load('vocab.t7')
print(vocb)
Out[1]:
In [ ]:
local LSTM = {}
function LSTM.lstm(input_size, rnn_size, n, dropout)
dropout = dropout or 0
-- n 指的是级联的 LSTM 层数,每个LSTM需要保存h_prev以及c_prev
-- rnn_size 指隐变量的维度
-- input_size 字符向量的维度
-- there will be 2*n+1 inputs
local inputs = {}
table.insert(inputs, nn.Identity()()) -- x
for L = 1,n do
table.insert(inputs, nn.Identity()()) -- prev_c[L]
table.insert(inputs, nn.Identity()()) -- prev_h[L]
end
local x, input_size_L
local outputs = {}
for L = 1,n do
-- c,h from previos timesteps
local prev_h = inputs[L*2+1]
local prev_c = inputs[L*2]
-- the input to this layer
if L == 1 then
x = OneHot(input_size)(inputs[1])
input_size_L = input_size
else
x = outputs[(L-1)*2] -- 上一层的当前时间的h作为当前层的输出
if dropout > 0 then x = nn.Dropout(dropout)(x) end -- apply dropout, if any
input_size_L = rnn_size
end
-- evaluate the input sums at once for efficiency
local i2h = nn.Linear(input_size_L, 4 * rnn_size)(x) -- 4组系数
local h2h = nn.Linear(rnn_size, 4 * rnn_size)(prev_h)
local all_input_sums = nn.CAddTable()({i2h, h2h})
local reshaped = nn.Reshape(4, rnn_size)(all_input_sums)
local n1, n2, n3, n4 = nn.SplitTable(2)(reshaped):split(4)
-- decode the gates
local in_gate = nn.Sigmoid()(n1)
local forget_gate = nn.Sigmoid()(n2)
local out_gate = nn.Sigmoid()(n3)
-- decode the write inputs
local in_transform = nn.Tanh()(n4)
-- perform the LSTM update
local next_c = nn.CAddTable()({ -- 对应的是公式中的z
nn.CMulTable()({forget_gate, prev_c}),
nn.CMulTable()({in_gate, in_transform})
})
-- gated cells form the output
local next_h = nn.CMulTable()({out_gate, nn.Tanh()(next_c)})
table.insert(outputs, next_c)
table.insert(outputs, next_h)
end
-- set up the decoder
local top_h = outputs[#outputs] -- 最后一个h输出+softmax
if dropout > 0 then top_h = nn.Dropout(dropout)(top_h) end
local proj = nn.Linear(rnn_size, input_size)(top_h) -- 把RNN -> 字符向量
local logsoft = nn.LogSoftMax()(proj)
table.insert(outputs, logsoft)
return nn.gModule(inputs, outputs)
end
return LSTM
In [ ]:
-- do fwd/bwd and return loss, grad_params
local init_state_global = clone_list(init_state)
function feval(x)
if x ~= params then
params:copy(x)
end
grad_params:zero()
------------------ get minibatch -------------------
local x, y = loader:next_batch(1)
if opt.gpuid >= 0 and opt.opencl == 0 then -- ship the input arrays to GPU
-- have to convert to float because integers can't be cuda()'d
x = x:float():cuda()
y = y:float():cuda()
end
if opt.gpuid >= 0 and opt.opencl == 1 then -- ship the input arrays to GPU
x = x:cl()
y = y:cl()
end
------------------- forward pass -------------------
local rnn_state = {[0] = init_state_global}
local predictions = {} -- softmax outputs
local loss = 0
for t=1,opt.seq_length do
clones.rnn[t]:training() -- make sure we are in correct mode (this is cheap, sets flag)
local lst = clones.rnn[t]:forward{x[{{}, t}], unpack(rnn_state[t-1])}
rnn_state[t] = {}
for i=1,#init_state do table.insert(rnn_state[t], lst[i]) end -- extract the state, without output
predictions[t] = lst[#lst] -- last element is the prediction
loss = loss + clones.criterion[t]:forward(predictions[t], y[{{}, t}])
end
loss = loss / opt.seq_length
------------------ backward pass -------------------
-- initialize gradient at time t to be zeros (there's no influence from future)
local drnn_state = {[opt.seq_length] = clone_list(init_state, true)} -- true also zeros the clones
for t=opt.seq_length,1,-1 do
-- backprop through loss, and softmax/linear
local doutput_t = clones.criterion[t]:backward(predictions[t], y[{{}, t}])
table.insert(drnn_state[t], doutput_t)
local dlst = clones.rnn[t]:backward({x[{{}, t}], unpack(rnn_state[t-1])}, drnn_state[t])
drnn_state[t-1] = {}
for k,v in pairs(dlst) do
if k > 1 then -- k == 1 is gradient on x, which we dont need
-- note we do k-1 because first item is dembeddings, and then follow the
-- derivatives of the state, starting at index 2. I know...
drnn_state[t-1][k-1] = v
end
end
end
------------------------ misc ----------------------
-- transfer final state to initial state (BPTT)
init_state_global = rnn_state[#rnn_state] -- NOTE: I don't think this needs to be a clone, right?
-- clip gradient element-wise
grad_params:clamp(-opt.grad_clip, opt.grad_clip)
return loss, grad_params
end
-- start optimization here
train_losses = {}
val_losses = {}
local optim_state = {learningRate = opt.learning_rate, alpha = opt.decay_rate}
local iterations = opt.max_epochs * loader.ntrain
local iterations_per_epoch = loader.ntrain
local loss0 = nil
for i = 1, iterations do
local epoch = i / loader.ntrain
local timer = torch.Timer()
local _, loss = optim.rmsprop(feval, params, optim_state)
local time = timer:time().real
local train_loss = loss[1] -- the loss is inside a list, pop it
train_losses[i] = train_loss
-- exponential learning rate decay
if i % loader.ntrain == 0 and opt.learning_rate_decay < 1 then
if epoch >= opt.learning_rate_decay_after then
local decay_factor = opt.learning_rate_decay
optim_state.learningRate = optim_state.learningRate * decay_factor -- decay it
print('decayed learning rate by a factor ' .. decay_factor .. ' to ' .. optim_state.learningRate)
end
end
-- handle early stopping if things are going really bad
if loss[1] ~= loss[1] then
print('loss is NaN. This usually indicates a bug. Please check the issues page for existing issues, or create a new issue, if none exist. Ideally, please state: your operating system, 32-bit/64-bit, your blas version, cpu/cuda/cl?')
break -- halt
end
if loss0 == nil then loss0 = loss[1] end
if loss[1] > loss0 * 3 then
print('loss is exploding, aborting.')
break -- halt
end
end
In [ ]:
-- start sampling/argmaxing
for i=1, opt.length do
-- log probabilities from the previous timestep
if opt.sample == 0 then
-- use argmax
local _, prev_char_ = prediction:max(2)
prev_char = prev_char_:resize(1)
else
-- use sampling
prediction:div(opt.temperature) -- scale by temperature
local probs = torch.exp(prediction):squeeze()
probs:div(torch.sum(probs)) -- renormalize so probs sum to one
prev_char = torch.multinomial(probs:float(), 1):resize(1):float()
end
-- forward the rnn for next character
local lst = protos.rnn:forward{prev_char, unpack(current_state)}
current_state = {}
for i=1,state_size do table.insert(current_state, lst[i]) end
prediction = lst[#lst] -- last element holds the log probabilities
io.write(ivocab[prev_char[1]])
end
io.write('\n') io.flush()