In [65]:
import pandas as pd
import networkx as nx
import pickle
In [14]:
df_n = pd.read_csv('stars_main_nodes.csv')
df_e = pd.read_csv('stars_main_edges.csv')
In [30]:
# making a simple test graph from stars node/edge csv
In [67]:
G = nx.from_pandas_dataframe(df_e, 'source', 'target')
In [68]:
node_attr_list = df_n.to_dict('records')
In [69]:
n_id = 0
for i in G.nodes_iter(data=True):
i[1]['label'] = node_attr_list[n_id]['label']
i[1]['node_type'] = node_attr_list[n_id]['node_type']
n_id += 1
In [70]:
pickle.dump(G,open('stars_test_graph.pkl','wb'))
In [74]:
df_n['node_type'].unique().tolist()
Out[74]:
In [82]:
import random
r = lambda: random.randint(0,255)
print('#%02X%02X%02X' % (r(),r(),r()))
In [85]:
gg = nx.Graph()
gg.add_edge(0,1)
gg.add_edge(1,2)
gg.add_edge(1,3)
gg.add_node(0,{'node_type':'A', 'label':'node0'})
gg.add_node(1,{'node_type':'A', 'label':'node1'})
gg.add_node(2,{'node_type': 'B', 'label':'node2'})
gg.add_node(2,{'node_type': 'B', 'label':'node2'})
In [87]:
gg.nodes(data=True)
Out[87]:
In [101]:
df_n.iloc[:1]['node_type'][0] == df_n.iloc[:1]['node_type'][0]
Out[101]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: