Les types de base


In [2]:
# Types numériques

entier = 1 
flottant = 1. # point
print("Entier :", type(entier))
print("Flottant :", type(flottant))

print("Addition :", 1 + 1) 
print("Soustraction :", 1 - 1) 
print("Multiplication :", 2 * 2) 
print("Division flottante :", 5 / 2) 
print("Division entière : ", 5 // 2) 
print("Puissance : ", 5 ** 2) 

import math

print("Racine carrée: ", math.sqrt(4))

import cmath

print("Racine carrée: ", cmath.sqrt(-1))

# Chaines de caractères

texte = "Ceci est un texte"
print("Chaine :", type(texte))
print('On peut utiliser des guillemets simples')
print("""On peut utiliser des triples guillemets 
pour insérer des sauts lignes""")
print("On peut insérer des sauts de ligne\nà la main")
print(r"On peut ignorer les caractères d'échappement: \n")
print("Convertir une chaine vers un entier :", 1 + int("1"))
print("Convertir une chaine vers un flottant :", 1 + float("1.5"))
print("Convertir un chiffre vers une chaine :", str(1) + "1.5")

# Formatage

nom = "Julie"
age = 6
print("Je m'appelle %s et j'ai %s ans" % (nom, age))
print("Je m'appelle {} et j'ai {} ans".format(nom, age))
print("Je m'appelle {nom} et j'ai {age} ans".format(nom=nom, age=age))
print(1, 2, 3, sep='#', end="*\n")

# Manipulation 
phrase = "sous la pont du Gond la caille y couve et la poule y pond       "
print("capitalize() :", phrase.capitalize())
print("lower() :", phrase.lower())
print("replace() :", phrase.replace("o", "a"))
print("strip() :", phrase.strip())
print("startswith() :", phrase.startswith(" "))
print("title() :", phrase.title())
print("upper() :", phrase.upper())
print("split() :", phrase.split())
print("join() :", ";".join(["1", "2", "3"]))
# Join accepte n'importe quel itérable:
";".join(str(x * x) for x in range(10))


# Booleens et None

print('True :', type(True))
print('False :', type(False))
print('None :', type(None))


print('1 == 2 :', 1 == 2)
print('1 <= 2 :', 1 <= 2)

# Equivalent booléenne:

print("bool(None) :", bool(None))
print("bool("") :", bool(""))
print("bool(0) :", bool(0))
print("bool([]) :", bool([]))
print("bool({}) :", bool({}))
print("bool(1) :", bool(1))
print("bool('chat') :", bool("chat"))
print("bool([1, 2, 3]) :", bool([1, 2, 3]))


Entier : <class 'int'>
Flottant : <class 'float'>
Addition : 2
Soustraction : 0
Multiplication : 4
Division flottante : 2.5
Division entière :  2
Puissance :  25
Racine carrée:  2.0
Racine carrée:  1j
Chaine : <class 'str'>
On peut utiliser des guillemets simples
On peut utiliser des triples guillemets 
pour insérer des sauts lignes
On peut insérer des sauts de ligne
à la main
On peut ignorer les caractères d'échappement: \n
Concertir une chaine vers un entier : 2
Concertir une chaine vers un flottant : 2.5
Concertir un chiffre vers une chaine : 11.5
Je m'appelle Julie et j'ai 6 ans
Je m'appelle Julie et j'ai 6 ans
Je m'appelle Julie et j'ai 6 ans
1#2#3*
capitalize() : Sous la pont du gond la caille y couve et la poule y pond       
lower() : sous la pont du gond la caille y couve et la poule y pond       
replace() : saus la pant du Gand la caille y cauve et la paule y pand       
strip() : sous la pont du Gond la caille y couve et la poule y pond
startswith() : False
title() : Sous La Pont Du Gond La Caille Y Couve Et La Poule Y Pond       
upper() : SOUS LA PONT DU GOND LA CAILLE Y COUVE ET LA POULE Y POND       
split() : ['sous', 'la', 'pont', 'du', 'Gond', 'la', 'caille', 'y', 'couve', 'et', 'la', 'poule', 'y', 'pond']
join() : 1;2;3
True : <class 'bool'>
False : <class 'bool'>
None : <class 'NoneType'>
1 == 2 : False
1 <= 2 : True
bool(None) : False
bool() : False
bool(0) : False
bool([]) : False
bool({}) : False
bool(1) : True
bool('chat') : True
bool([1, 2, 3]) : True

Logique booléenne


In [44]:
age = int(input("Quel age avez-vous ?"))
if age > 18:
    print('Vous êtes majeur') # bloc indenté de 4 espace
elif age == 18:
    print('Vous êtes majeur, mais de justesse')
else:
    print('Vous êtes mineur')

# and

print("True and True :", True and True)
print("True and False :", True and False)
print("False and True :", False and True)
print("False and False :", False and False)

# or

print("True or True :", True or True)
print("True or False :", True or False)
print("False or True :", False or True)
print("False or False :", False or False)

if age == 18 and True or 3 > 2:
    print('yeah')
    
# all() et any()
couleurs = ["bleu", "blanc", "rouge"]
print("""["u" in c for c in couleurs]""", ["u" in c for c in couleurs])
print("""any("u" in c for c in couleurs)""", any("u" in c for c in couleurs))
print("""all("u" in c for c in couleurs)""", all("u" in c for c in couleurs))


Quel age avez-vous ?18
Vous êtes majeur, mais de justesse
True and True : True
True and False : False
False and True : False
False and False : False
True or True : True
True or False : True
False or True : True
False or False : False
yeah
["u" in c for c in couleurs] [True, False, True]
any("u" in c for c in couleurs) True
all("u" in c for c in couleurs) False

While


In [ ]:
compteur = 0
while compteur < 10:
    print(compteur)
    compteur += 1


compteur = 0
while compteur < 10:
    if compteur % 2 == 0:
        compteur += 0.5
        continue # sauter la fin de ce tour de boucle
    print(compteur)
    compteur += 1
    
    

    
    

compteur = 0
while True:
    print(compteur)
    compteur += 1
    if compteur > 10:
        break # on sort de la boucle 
    

reponse = None
while reponse != "stop":
    reponse = input("Quand est-ce qu'on arrive ?")


0
1
2
3
4
5
6
7
8
9
0.5
1.5
2.5
3.5
4.5
5.5
6.5
7.5
8.5
9.5
0
1
2
3
4
5
6
7
8
9
10
Quand est-ce qu'on arrive ?toto
t
o
t
o
Quand est-ce qu'on arrive ?fjdklsfq

Iteration


In [1]:
fruix = ["pomme", "banane", "poire", "ananas", "kiwi", "cerise", "fraise", "framboise"]
print("type(fruix) :", type(fruix))
fruix[0] = 'golden'
print("fruix[0] :", fruix[0]) # indexing
print("fruix[3] :", fruix[3]) 
print("fruix[-2] :", fruix[-2])
print("fruix.append('tomate') :", fruix.append('tomate'))
print("fruix.insert(2, 'avocat') :", fruix.insert(2, 'avocat'))
print("fruix.pop() :", fruix.pop())
print("fruix.pop(7) :", fruix.pop(7))
print("len(fruix) :", len(fruix))
print('fruitx :', fruix)
print("fruix[2:5] :", fruix[2:5]) # slicing
print('list("chien") :', list("chien"))

# les tuples sont des listes en lecture seule
t = tuple(fruix)
print("type(t) :", type(t))
print("t[0] :", t[0])
print("t[3:7] :", t[3:7])

# les sets sont non ordonnés, sans doublons et vérifier l'appartenance est très rapide
nombres = set([1, 2, 3, 4, 5, 4, 4, 3])
print("nombres.add(1) :", nombres.add(1))
print("nombres :", nombres)
print("1 in nombres :", 1 in nombres)
print("nombres ^ set([1, 3]) :", nombres ^ set([1, 3]))

# boucle for

for element in fruix:
    print(element)

for x in t:
    print(x)
    
for nombre in nombres:
    print(nombre)
    
for lettre in "Une petite puce pique plus qu'une grosse puce ne pique":
    print(lettre)
    
# unpacking
a, b, c = (1, 2, 3)
print(a)

# récupérer l'index de l'indentation
# enumerate donne [(0, "pomme"), (1, "banane")...]
for i, element in enumerate(fruix):
    print(i, element)
    
for a, b in zip('abc', range(3)):
    print(a, b)
    
# les listes en intensions sont des raccourcis syntaxiques pour filtrer/transformer des listes
print("[x * x for x in range(10) if x % 2 == 0]",
        [x * x for x in range(10) if x % 2 == 0])
print("{x * x for x in range(10) if x % 2 == 0}",
        {x * x for x in range(10) if x % 2 == 0})
print("{x : x * x for x in range(10) if x % 2 == 0}",
        {x : x * x for x in range(10) if x % 2 == 0})

# on peut produire un générateur 
print("(x for x in range(10) if x % 2 == 0)",
        (x for x in range(10) if x % 2 == 0))


# la boucle for sous le capeau:

iterateur = iter('abc')
print("next(iterateur) :", next(iterateur))
print("next(iterateur) :", next(iterateur))
print("next(iterateur) :", next(iterateur))
print("next(iterateur, None) :", next(iterateur, None))


type(fruix) : <class 'list'>
fruix[0] : golden
fruix[3] : ananas
fruix[-2] : fraise
fruix.append('tomate') : None
fruix.insert(2, 'avocat') : None
fruix.pop() : tomate
fruix.pop(7) : fraise
len(fruix) : 8
fruitx : ['golden', 'banane', 'avocat', 'poire', 'ananas', 'kiwi', 'cerise', 'framboise']
fruix[2:5] : ['avocat', 'poire', 'ananas']
list("chien") : ['c', 'h', 'i', 'e', 'n']
type(t) : <class 'tuple'>
t[0] : golden
t[3:7] : ('poire', 'ananas', 'kiwi', 'cerise')
nombres.add(1) : None
nombres : {1, 2, 3, 4, 5}
1 in nombres : True
nombres ^ set([1, 3]) : {2, 4, 5}
golden
banane
avocat
poire
ananas
kiwi
cerise
framboise
golden
banane
avocat
poire
ananas
kiwi
cerise
framboise
1
2
3
4
5
U
n
e
 
p
e
t
i
t
e
 
p
u
c
e
 
p
i
q
u
e
 
p
l
u
s
 
q
u
'
u
n
e
 
g
r
o
s
s
e
 
p
u
c
e
 
n
e
 
p
i
q
u
e
1
0 golden
1 banane
2 avocat
3 poire
4 ananas
5 kiwi
6 cerise
7 framboise
a 0
b 1
c 2
[x * x for x in range(10) if x % 2 == 0] [0, 4, 16, 36, 64]
{x * x for x in range(10) if x % 2 == 0} {0, 16, 64, 4, 36}
{x : x * x for x in range(10) if x % 2 == 0} {0: 0, 8: 64, 2: 4, 4: 16, 6: 36}
(x for x in range(10) if x % 2 == 0) <generator object <genexpr> at 0x7fc9fd380780>
next(iterateur) : a
next(iterateur) : b
next(iterateur) : c
next(iterateur, None) : None

Dictionnaires


In [33]:
scores = {
    "joe": 5,
    "lea": 3,
    "dominique": 10
}

scores['lea'] = 1 # modification
scores['julie'] = 9 # creation
scores['lea'] += 1

print("scores['joe'] :", scores['joe'])
print("scores :", scores)


# petit exercice d'utilisation du dico : 
# trouver où sont les lettres dans une 
# phrase
phrase = "Bonum vinum laetificat cor hominis"
places = {}

# parcourir la phrase par lettre et position
for i, lettre in enumerate(phrase):
    
    # on met toutes les lettres en minuscule
    # et on retire tout espace
    lettre = lettre.lower().strip()
    
    # si la lettre ne contenait que des espaces
    if lettre:
        
        # si la lettre existe dans le dico
        if lettre in places:
            # on récupère la liste de ses indices
            indices = places[lettre]
        else:
            # sinon on créé une nouvelle liste
            indices = places[lettre] = []
        
        # on ajoute le nouvel index à la liste
        indices.append(i)
    
from pprint import pprint
    
print("places :")
pprint(places)
print("places['u'] :", places['u'])
print("places['u'][0] :", places['u'][0])

for lettre, indices in places.items():
    print(' ~~ ', lettre, ' ~~ ')
    for index in indices:
        print('\t-', index)


scores['joe'] : 5
scores : {'julie': 9, 'joe': 5, 'dominique': 10, 'lea': 2}
places :
{'a': [13, 20],
 'b': [0],
 'c': [19, 23],
 'e': [14],
 'f': [17],
 'h': [27],
 'i': [7, 16, 18, 30, 32],
 'l': [12],
 'm': [4, 10, 29],
 'n': [2, 8, 31],
 'o': [1, 24, 28],
 'r': [25],
 's': [33],
 't': [15, 21],
 'u': [3, 9],
 'v': [6]}
places['u'] : [3, 9]
places['u'][0] : 3
 ~~  t  ~~ 
	- 15
	- 21
 ~~  n  ~~ 
	- 2
	- 8
	- 31
 ~~  a  ~~ 
	- 13
	- 20
 ~~  l  ~~ 
	- 12
 ~~  e  ~~ 
	- 14
 ~~  o  ~~ 
	- 1
	- 24
	- 28
 ~~  f  ~~ 
	- 17
 ~~  i  ~~ 
	- 7
	- 16
	- 18
	- 30
	- 32
 ~~  c  ~~ 
	- 19
	- 23
 ~~  m  ~~ 
	- 4
	- 10
	- 29
 ~~  u  ~~ 
	- 3
	- 9
 ~~  h  ~~ 
	- 27
 ~~  r  ~~ 
	- 25
 ~~  v  ~~ 
	- 6
 ~~  s  ~~ 
	- 33
 ~~  b  ~~ 
	- 0

Fichiers


In [1]:
# écrire un fichier texte

fichier = open('test.txt', 'w')
fichier.write('hello\n')
fichier.write('hello\n')
fichier.write('hello\n')
fichier.write('hello\n')
fichier.write('you')
fichier.close()

# lire un fichier texte

fichier = open('test.txt')
print("fichier.readline() :", fichier.readline())
print("fichier.read(6) :", fichier.read(6))

print('for ligne in fichier :')
for ligne in fichier:
    print(ligne, end="")


print('for ligne in fichier (bis):')
for ligne in fichier:
    print(ligne)

print('for ligne in fichier (après seek):')
fichier.seek(0)
print(fichier.readline())
        
        
fichier.close()

# ouvrir un fichier en mode binaire
fichier = open('/home/kevin/Bureau/binary_data.png', 'rb')
print("fichier.read()[:50] :", fichier.read()[:50])
fichier.close()

# récupérer une info depuis un format binaire
import struct
width, height = struct.unpack('>ii', open('/home/kevin/Bureau/binary_data.png', 'rb').read()[16:24])
print(width, height)


fichier.readline() : hello

fichier.read(6) : hello

for ligne in fichier :
hello
hello
youfor ligne in fichier (bis):
for ligne in fichier (après seek):
hello

fichier.read()[:50] : b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x01w\x00\x00\x02\x9b\x08\x06\x00\x00\x00\x0e\xae\xca\x9a\x00\x00\x00\x01sRGB\x00\xae\xce\x1c\xe9\x00\x00@\x00'
375 667

In [11]:
# exemple d'analyse de fichier

fichier = open('/home/kevin/Bureau/data.csv')

# sauter l'entête
header = fichier.readline()

max_ratio = 0
max_bv = None

for row in fichier:
    # une ligne : "A0220200";0.2754;0.0532;0.492;0;0.1794;0;0
    # on extrait les champs de la ligne
    ligne = row.replace('"', '').split(";")
    code_bv = ligne[0]
    # on fait la somme des champs végétations et autres 
    vegetations = sum(float(x) for x in ligne[1:4])
    autres_terrains = sum(float(x) for x in ligne[4:])
     
    if vegetations < autres_terrains:
        print(row)
        
        
fichier.close()


"O0105110";0;0;0;1;0;0;0

"O1115010";0.033;0.073;0.3108;0.5832;0;0;0

"V0002010";0.1235;0.1463;0.0556;0.3192;0.019;0.3365;0

"W0000010";0.0204;0.252;0.151;0.5128;9e-04;0.063;0

"W1014010";0.045;0.3415;0.0966;0.4076;0.0022;0.107;0


In [19]:
# exemple avec le module CSV

import csv

fichier = open('/home/kevin/Bureau/data.csv')
fichier.readline()

max_ratio = 0
max_bv = None

for row in csv.reader(fichier, delimiter=";"):
    # une ligne : "A0220200";0.2754;0.0532;0.492;0;0.1794;0;0
    # on extrait les champs de la ligne

    code_bv = row[0]
    # on fait la somme des champs végétations et autres 
    vegetations = sum(float(x) for x in row[1:4])
    autres_terrains = sum(float(x) for x in row[4:])
     
    if vegetations < autres_terrains:
        print(row)


['O0105110', '0', '0', '0', '1', '0', '0', '0']
['O1115010', '0.033', '0.073', '0.3108', '0.5832', '0', '0', '0']
['V0002010', '0.1235', '0.1463', '0.0556', '0.3192', '0.019', '0.3365', '0']
['W0000010', '0.0204', '0.252', '0.151', '0.5128', '9e-04', '0.063', '0']
['W1014010', '0.045', '0.3415', '0.0966', '0.4076', '0.0022', '0.107', '0']

Exception


In [56]:
# granularité des try/except

print('start')
try:
    for x in range(0, 10):
        print(1 / (x - 2))
except ZeroDivisionError:
    pass

print('fin')

print('start')
for x in range(0, 10):
    try:
        print(1 / x)
    except ZeroDivisionError:
        print('ERROR !')
    else:
        print("Pas d'erreur :)")
    finally:
        print('TOUJOURS')
print('fin')


start
-0.5
-1.0
fin
start
ERROR !
TOUJOURS
1.0
Pas d'erreur :)
TOUJOURS
0.5
Pas d'erreur :)
TOUJOURS
0.3333333333333333
Pas d'erreur :)
TOUJOURS
0.25
Pas d'erreur :)
TOUJOURS
0.2
Pas d'erreur :)
TOUJOURS
0.16666666666666666
Pas d'erreur :)
TOUJOURS
0.14285714285714285
Pas d'erreur :)
TOUJOURS
0.125
Pas d'erreur :)
TOUJOURS
0.1111111111111111
Pas d'erreur :)
TOUJOURS
fin

In [57]:
import random

obj = random.choice(([], {}))
try:
    obj[1]
except (IndexError, KeyError):
    print(type(obj))
    
import random

obj = random.choice(([], {}))
try:
    obj[1]
except IndexError:
    print('List')
except KeyError:
    print('Dico')


<class 'dict'>
List

In [61]:
# Ouverture de fichier avec robustesse

# version manuelle
try:
    fichier = open('/tmp/test')
except OSError:
    print('boo')
else:
    data = fichier.read()
    print('content :)')
finally:
    # fermeture du fichier 
    try:
        fichier.close()
    except NameError:
        pass

# version automatique avec un contexte manager
try: 
    with open('/tmp/test') as fichier:
        # tout le code relatif au travail sur le fichier
        # doit être dans ce bloc
        data = fichier.read()
        print('content :)')
    # en dehors du bloc, le fichier est garanti d'être fermé
    # proprement
except OSError:
    print('boo')


boo
boo

Fonctions


In [28]:
def multiplier(a, b):
    res = a * b
    return res

multiplier(2, 3)
multiplier(2)
multiplier(b=2, a=3)

# fonction anonyme
multiplier_anonyme = lambda a, b: a * b

print(multiplier(3, 9))
print(multiplier_anonyme(3, 9))

# callback
def une_fonction_qui_appelle_une_fonction(une_fonction, param):
    print('avant la fonction')
    une_fonction(param)
    print('apres la fonction')

def une_fonction_qui_fait_coucou(message):
    print(message)
    
une_fonction_qui_appelle_une_fonction(une_fonction_qui_fait_coucou, "hello")


# injection de dépendance
def discours(msg, nombre, formateur=lambda msg: msg):
    print(formateur(msg))
    for x in range(nombre):
        print(msg)

def deco(msg):
    return msg.upper() + "!!!"
        
discours("hello", 3, deco)


27
27
avant la fonction
hello
apres la fonction
HELLO!!!
hello
hello
hello

Tri


In [45]:
data = [random.randint(47, 158) for x in range(50)]

print(data)

print(sorted(data, reverse=True))

print(sorted(set('fjdkmqjdljl')))

data.sort()

print(data)

scores = {
    "leo": 6,
    "bianca": 2,
    "said": 8,
    "li": 3
}

def trieur(element):
    return element[1]

data = sorted(scores.items(), key=trieur, reverse=True)[:2]
print(data)

data = sorted(['bleu', 'blanc', 'rouge'], key=lambda e: e[-1])
print(data)


[109, 120, 67, 117, 126, 81, 91, 97, 109, 111, 106, 143, 88, 125, 136, 108, 112, 50, 136, 111, 102, 115, 75, 154, 145, 114, 137, 101, 155, 78, 88, 105, 73, 83, 134, 75, 115, 65, 104, 152, 65, 134, 71, 107, 157, 116, 75, 148, 98, 69]
[157, 155, 154, 152, 148, 145, 143, 137, 136, 136, 134, 134, 126, 125, 120, 117, 116, 115, 115, 114, 112, 111, 111, 109, 109, 108, 107, 106, 105, 104, 102, 101, 98, 97, 91, 88, 88, 83, 81, 78, 75, 75, 75, 73, 71, 69, 67, 65, 65, 50]
['d', 'f', 'j', 'k', 'l', 'm', 'q']
[50, 65, 65, 67, 69, 71, 73, 75, 75, 75, 78, 81, 83, 88, 88, 91, 97, 98, 101, 102, 104, 105, 106, 107, 108, 109, 109, 111, 111, 112, 114, 115, 115, 116, 117, 120, 125, 126, 134, 134, 136, 136, 137, 143, 145, 148, 152, 154, 155, 157]
[('said', 8), ('leo', 6)]
['blanc', 'rouge', 'bleu']

In [80]:
paroles = """
Hold on to the thread
The currents will shift
Guide me towards you
Know something's left
And we're all allowed to dream
Of the next time we touch..........

You don't have to stray
The oceans away
Waves roll in my thoughts
Hold tight the ring...
The sea will rise...
Please stand by the shore...
I will be...
I will be...
There once more.........
"""

# virer la ponctuation
# récupérer chaque mot <- fonction

# compter le nombre de fois ou apparait chaque mot
# 3 mots les plus utilisés


import collections

def remove(text, to_remove):
    """ Remove a set of characters from the text
    
        Example:
        
            >>> remove("abcd", ['a', 'd'])
            'bc'
    """
    for x in to_remove:
        text = text.replace(x, '')
    return text

def get_mots(texte):
    return remove(texte, ('.', ',')).split()

compteur = collections.Counter(get_mots(paroles))
print(compteur.most_common(3))


[('will', 4), ('the', 4), ('The', 3)]

In [79]:
# paramétrage dynamique

def multiplier(*iterable):
    print(iterable)
    total = 1
    for x in iterable:
        total *= x
    return total
    
    
multiplier(2, 3, 8, 8,)

def toto(a, b, *args, **kwargs):
    print(a)
    print(b)
    print(args)
    print(kwargs)
    
toto(1, 2, 3, 4, 5, d=1, foo=7, bar=8)


# forcer l'unpacking

def ajouter(a, b, c):
    return a + b + c

data = (1, 2, 3)

ajouter(*data) # ** unpack les dicos comme key=val

def diviser(numerateur, denominateur):
    return numerateur / denominateur

data = {"numerateur": 1, "denominateur": 2}

diviser(**data)


data = [
   (1, 2, 3),
   (3, 4, 5),
   (6, 7, 8)
]

sum(ajouter(*x) for x in data)


(2, 3, 8, 8)
1
2
(3, 4, 5)
{'foo': 7, 'bar': 8, 'd': 1}
Out[79]:
39

In [1]:
from package import outils

help(outils.ajouter)

a = outils.ajouter(1, 2)

a


fjdsqkmfjdkl
Help on function ajouter in module package.outils:

ajouter(a, b)
    Ajoute a et b et retourne la somme

Out[1]:
3

Generateur


In [94]:
g = (x * x for x in range(10) if x % 2 == 0)

print(list(g))


def faire_des_carres(taille=10):
    for x in range(taille):
        if x % 2 == 0:
            yield x * x 
            
for x in faire_des_carres(2):
    print(x)

    
def faire_generateur():
    print('Hello')
    yield 1
    print('Ensuite')
    yield 2
    print('Et puis')
    yield 3
    print('Au final')
    
    
g = faire_generateur()
a = next(g)
b = next(g)


[0, 4, 16, 36, 64]
0
Hello
Ensuite

In [116]:
import csv

def bornes(iterable, champ, borne_min, borne_max):
    for ligne in iterable:
        if borne_max > ligne[champ] > borne_min:
            yield ligne
            
def convert_to_float(iterable, start, end):
    for ligne in iterable:
        res = []
        for i, x in enumerate(ligne):
            if start <= i <= end:
                x = float(x)
            res.append(x)
        yield res
        

with open('/home/kevin/Bureau/data.csv') as f:
    f.readline()
    data = csv.reader(f, delimiter=';')
    data = convert_to_float(data, 1, 7)
    data = bornes(data, 1, 0.3, 0.7)
    for x in data:
        print(x)


['A1050310', 0.3902, 0.082, 0.4788, 0.0, 0.0492, 0.0, 0.0]
['A1080330', 0.3233, 0.0571, 0.5474, 0.0015, 0.0672, 0.0, 0.0033]
['A1122020', 0.3263, 0.0441, 0.5908, 0.0, 0.0348, 0.0, 0.0039]
['A1133010', 0.3895, 0.0489, 0.5618, 0.0, 0.0, 0.0, 0.0]
['A1150200', 0.3036, 0.0512, 0.5758, 0.004, 0.0551, 0.0, 0.0104]
['A1252010', 0.6021, 0.0748, 0.2606, 0.0062, 0.0513, 0.0, 0.005]
['A1310310', 0.354, 0.056, 0.46, 0.0085, 0.1168, 0.0, 0.0047]
['A1320310', 0.4215, 0.0599, 0.4028, 0.0074, 0.1034, 0.0007, 0.0043]
['A1340310', 0.4098, 0.0588, 0.415, 0.0071, 0.1044, 0.0007, 0.0042]
['A1350310', 0.4047, 0.0706, 0.4134, 0.006, 0.1017, 0.0005, 0.0032]
['A1470030', 0.4122, 0.0595, 0.411, 0.0072, 0.1053, 0.0007, 0.0042]
['A1552020', 0.503, 0.1422, 0.2661, 0.0019, 0.0868, 0.0, 0.0]
['A1554030', 0.6851, 0.1585, 0.1089, 0.0, 0.0475, 0.0, 0.0]
['A1583010', 0.4635, 0.1165, 0.333, 0.0025, 0.0847, 0.0, 0.0]
['A2012020', 0.6914, 0.2681, 0.0135, 0.0, 0.027, 0.0, 0.0]
['A2023030', 0.6363, 0.2953, 0.0227, 0.0, 0.0459, 0.0, 0.0]
['A2035310', 0.6919, 0.1921, 0.116, 0.0, 0.0, 0.0, 0.0]
['A2040100', 0.6491, 0.2305, 0.0688, 0.0, 0.0516, 0.0, 0.0]
['A2042010', 0.64, 0.2437, 0.0656, 0.0, 0.0508, 0.0, 0.0]
['A2052010', 0.6159, 0.2612, 0.0657, 0.0, 0.0537, 0.001, 0.0023]
['A2052020', 0.5998, 0.2697, 0.072, 0.0, 0.0555, 0.001, 0.0022]
['A2113010', 0.6515, 0.2976, 0.0264, 0.0, 0.0245, 0.0, 0.0]
['A2122010', 0.5747, 0.319, 0.0597, 0.0, 0.0342, 0.0037, 0.0086]
['A2132010', 0.6188, 0.2624, 0.054, 0.0, 0.0566, 0.0023, 0.006]
['A2240310', 0.4354, 0.1122, 0.3527, 0.0045, 0.0922, 0.0004, 0.0023]
['A2280350', 0.4336, 0.1235, 0.3343, 0.0046, 0.1016, 0.0003, 0.0021]
['A2312020', 0.6829, 0.0793, 0.1368, 0.0, 0.101, 0.0, 0.0]
['A2532010', 0.4367, 0.2075, 0.2978, 0.0, 0.0579, 0.0, 0.0]
['A2612010', 0.6471, 0.1629, 0.0446, 0.0, 0.1453, 0.0, 0.0]
['A2702010', 0.671, 0.2552, 0.0, 0.0, 0.0738, 0.0, 0.0]
['A2842010', 0.4611, 0.2084, 0.2351, 0.0, 0.0954, 0.0, 0.0]
['A2860112', 0.5926, 0.1574, 0.1634, 0.0014, 0.0849, 0.0, 0.0]
['A3151010', 0.5676, 0.1431, 0.2428, 0.0, 0.0466, 0.0, 0.0]
['A3301010', 0.6549, 0.1218, 0.1797, 0.0, 0.0436, 0.0, 0.0]
['A3311010', 0.6147, 0.1191, 0.1999, 0.0, 0.0663, 0.0, 0.0]
['A3472010', 0.4068, 0.1458, 0.3919, 0.0, 0.0557, 0.0, 0.0]
['A3492020', 0.3756, 0.1548, 0.4039, 0.0, 0.0655, 0.0, 0.0]
['A3501010', 0.464, 0.1291, 0.3344, 0.0016, 0.0708, 0.0, 0.0]
['A3782110', 0.6112, 0.0727, 0.2631, 0.006, 0.0467, 0.0, 0.0]
['A3792010', 0.6237, 0.0984, 0.2007, 0.0019, 0.0419, 0.0, 0.0]
['A4050620', 0.6501, 0.2293, 0.0743, 0.0, 0.0463, 0.0, 0.0]
['A4140202', 0.6834, 0.2217, 0.0487, 0.0, 0.0461, 0.0, 0.0]
['A4173010', 0.6816, 0.1842, 0.1015, 0.0, 0.0327, 0.0, 0.0]
['A4200630', 0.6679, 0.205, 0.0721, 0.0016, 0.0534, 0.0, 0.0]
['A4250640', 0.638, 0.1844, 0.1292, 0.0008, 0.0443, 0.0008, 0.0025]
['A4333010', 0.5206, 0.2435, 0.2147, 0.0, 0.0213, 0.0, 0.0]
['A4362030', 0.586, 0.2195, 0.1561, 0.0, 0.03, 0.0, 0.0084]
['A4442010', 0.4298, 0.2374, 0.3277, 0.0, 0.0052, 0.0, 0.0]
['A4632010', 0.3273, 0.2932, 0.3121, 0.0, 0.0675, 0.0, 0.0]
['A5002010', 0.3064, 0.2479, 0.4176, 0.0, 0.028, 0.0, 0.0]
['A5110610', 0.5363, 0.2166, 0.1897, 0.0056, 0.0493, 0.0005, 0.002]
['A5500610', 0.4169, 0.2569, 0.2771, 0.0039, 0.0416, 0.0003, 0.0032]
['A5622010', 0.3375, 0.2301, 0.3655, 0.0, 0.0668, 0.0, 0.0]
['A5730610', 0.4181, 0.2552, 0.2762, 0.0036, 0.0415, 0.0003, 0.0053]
['A6001010', 0.688, 0.1807, 0.0879, 0.0, 0.035, 0.0084, 0.0]
['A6051020', 0.6658, 0.1548, 0.1226, 0.0054, 0.0499, 0.0015, 0.0]
['A6151030', 0.6913, 0.1623, 0.0929, 0.0041, 0.0485, 0.0008, 0.0]
['A6341010', 0.6806, 0.1329, 0.1222, 0.0068, 0.0524, 0.0005, 0.0045]
['A6541110', 0.4568, 0.1523, 0.3593, 0.0, 0.0296, 0.0, 0.0021]
['A6543010', 0.5766, 0.1044, 0.2663, 0.0, 0.0526, 0.0, 0.0]
['A6571110', 0.4437, 0.1648, 0.3525, 0.0, 0.0373, 0.0, 0.0018]
['A6653010', 0.5449, 0.1378, 0.2814, 0.0, 0.0358, 0.0, 0.0]
['A6701210', 0.6403, 0.179, 0.1564, 0.0033, 0.0209, 0.0, 0.0]
['A6731220', 0.5065, 0.1948, 0.2737, 0.004, 0.0209, 0.0, 0.0]
['A6761010', 0.5699, 0.1571, 0.2226, 0.0043, 0.0429, 0.0002, 0.0031]
['A6903810', 0.3087, 0.3788, 0.3125, 0.0, 0.0, 0.0, 0.0]
['A6921010', 0.5069, 0.1812, 0.2591, 0.0058, 0.0425, 0.0002, 0.0043]
['A6941020', 0.4878, 0.1813, 0.2603, 0.0064, 0.0597, 0.0002, 0.0044]
['A7010610', 0.4458, 0.2225, 0.2664, 0.005, 0.0537, 0.0002, 0.0064]
['A7122010', 0.3613, 0.1404, 0.4704, 0.0, 0.0192, 0.0, 0.0088]
['A7930610', 0.388, 0.2181, 0.3259, 0.0044, 0.0536, 0.0003, 0.0095]
['A8006210', 0.3862, 0.1781, 0.4356, 0.0, 0.0, 0.0, 0.0]
['A8021010', 0.4051, 0.1974, 0.3793, 0.0, 0.011, 0.0072, 0.0]
['A8071010', 0.3032, 0.2143, 0.4525, 0.0, 0.0275, 0.0024, 0.0]
['A8732010', 0.5407, 0.1675, 0.2406, 0.0092, 0.0419, 0.0, 0.0]
['A8853010', 0.3466, 0.1503, 0.4849, 0.0, 0.0181, 0.0, 0.0]
['A9021010', 0.616, 0.1462, 0.1801, 0.0064, 0.0254, 0.0, 0.0257]
['A9091050', 0.4113, 0.2144, 0.3098, 0.0023, 0.0465, 0.0, 0.0158]
['A9091060', 0.4027, 0.2139, 0.3186, 0.0028, 0.0439, 0.0, 0.0181]
['A9221010', 0.3426, 0.2296, 0.3642, 0.0011, 0.0507, 0.0006, 0.0113]
['A9301010', 0.3448, 0.227, 0.364, 0.0011, 0.0508, 0.0006, 0.0115]
['A9352050', 0.395, 0.1799, 0.388, 0.0, 0.0372, 0.0, 0.0]
['A9532010', 0.3831, 0.1295, 0.1789, 0.0343, 0.2689, 0.0055, 0.0]
['A9612010', 0.4822, 0.0682, 0.1676, 0.0314, 0.1808, 0.0697, 0.0]
['B1052010', 0.4101, 0.4495, 0.1274, 0.0002, 0.0127, 0.0, 0.0]
['B1092010', 0.3845, 0.4445, 0.1459, 0.0041, 0.0212, 0.0, 0.0]
['B1150010', 0.3164, 0.4354, 0.2159, 0.0019, 0.0304, 0.0, 0.0]
['B1340010', 0.3078, 0.3936, 0.2663, 0.0017, 0.0305, 0.0, 0.0]
['B2130010', 0.3279, 0.3625, 0.2792, 0.0034, 0.0268, 0.0, 0.0]
['B2220010', 0.3339, 0.3524, 0.2835, 0.004, 0.0262, 0.0, 0.0]
['B3010010', 0.363, 0.3108, 0.2942, 0.0044, 0.0277, 0.0, 0.0]
['B3150020', 0.3559, 0.3032, 0.3094, 0.0041, 0.0266, 0.0, 0.0008]
['B4572010', 0.3706, 0.393, 0.2128, 0.0, 0.015, 0.0, 0.0087]
['B5020010', 0.3305, 0.2994, 0.2993, 0.0034, 0.0326, 0.0005, 0.0012]
['B5600010', 0.3246, 0.3199, 0.2864, 0.003, 0.0355, 0.0009, 0.0019]
['D0137050', 0.5414, 0.2767, 0.0, 0.0, 0.1819, 0.0, 0.0]
['E2368310', 0.4453, 0.0701, 0.2116, 0.016, 0.257, 0.0, 0.0]
['H0100010', 0.419, 0.0937, 0.4819, 0.0, 0.0054, 0.0, 0.0]
['H0100020', 0.4224, 0.078, 0.4852, 0.0028, 0.0116, 0.0, 0.0]
['H0210010', 0.4109, 0.0655, 0.5112, 0.0014, 0.0104, 0.0007, 0.0]
['H0301010', 0.5136, 0.1518, 0.3288, 0.0, 0.0058, 0.0, 0.0]
['H0321010', 0.5078, 0.1325, 0.3434, 0.0, 0.0162, 0.0, 0.0]
['H0321020', 0.5617, 0.1207, 0.3053, 0.0, 0.0124, 0.0, 0.0]
['H0321030', 0.5342, 0.1, 0.355, 0.0, 0.0109, 0.0, 0.0]
['H0321040', 0.5367, 0.1232, 0.3304, 0.0, 0.0096, 0.0, 0.0]
['H0400010', 0.4494, 0.0844, 0.4524, 0.0009, 0.0123, 0.0004, 0.0]
['H0400020', 0.4473, 0.0832, 0.4557, 0.0009, 0.0123, 0.0004, 0.0]
['H0810010', 0.3539, 0.0786, 0.5291, 0.0019, 0.0287, 0.0005, 0.0075]
['H1051020', 0.5928, 0.0703, 0.3259, 0.0015, 0.0077, 0.0, 0.0015]
['H1122010', 0.5048, 0.0942, 0.3711, 0.0, 0.0299, 0.0, 0.0]
['H1122020', 0.5354, 0.095, 0.3422, 0.0, 0.0273, 0.0, 0.0]
['H1201010', 0.5528, 0.0832, 0.3463, 0.0008, 0.0161, 0.0, 0.0008]
['H1231010', 0.5165, 0.087, 0.3737, 0.0006, 0.0167, 0.0, 0.0056]
['H1302010', 0.4188, 0.1205, 0.432, 0.0, 0.0286, 0.0, 0.0]
['H1362010', 0.3565, 0.17, 0.4201, 0.0012, 0.0192, 0.0035, 0.0296]
['H1501010', 0.3682, 0.0993, 0.4928, 0.0006, 0.0217, 0.001, 0.0166]
['H1700010', 0.318, 0.0804, 0.5622, 0.0012, 0.027, 0.0006, 0.0104]
['H2001020', 0.6417, 0.3384, 0.0153, 0.0, 0.0046, 0.0, 0.0]
['H2021010', 0.6356, 0.3039, 0.0457, 0.0, 0.0017, 0.0, 0.0131]
['H2051010', 0.3655, 0.5227, 0.1004, 0.0004, 0.0071, 0.0, 0.004]
['H2073110', 0.5752, 0.1487, 0.2746, 0.0, 0.0014, 0.0, 0.0]
['H2122010', 0.662, 0.2723, 0.0466, 0.0, 0.0048, 0.0, 0.0143]
['H2142010', 0.5985, 0.3235, 0.0581, 0.0, 0.0025, 0.0, 0.0174]
['H2142030', 0.5245, 0.3767, 0.0805, 0.0, 0.0056, 0.0, 0.0127]
['H2163010', 0.5954, 0.3546, 0.0447, 0.0, 0.0053, 0.0, 0.0]
['H2172310', 0.5139, 0.3831, 0.0865, 0.0, 0.0041, 0.0, 0.0124]
['H2172320', 0.4886, 0.3895, 0.0889, 0.0, 0.0243, 0.0, 0.0087]
['H2182010', 0.4944, 0.3609, 0.1236, 0.0, 0.0125, 0.0, 0.0085]
['H2221010', 0.3893, 0.2825, 0.3026, 0.0001, 0.0213, 0.0, 0.0042]
['H2434010', 0.3341, 0.2845, 0.3664, 0.0, 0.015, 0.0, 0.0]
['H2462020', 0.3166, 0.2621, 0.3965, 0.0005, 0.0222, 0.0, 0.002]
['H2473010', 0.3852, 0.1201, 0.483, 0.0, 0.0096, 0.0, 0.0021]
['H2482010', 0.3114, 0.211, 0.4548, 0.0003, 0.0204, 0.0, 0.002]
['H2482020', 0.306, 0.2501, 0.4193, 0.0005, 0.0224, 0.0, 0.0019]
['H2501020', 0.3327, 0.2446, 0.3969, 0.0005, 0.0218, 0.0, 0.0033]
['H2513410', 0.4453, 0.0209, 0.5229, 0.0, 0.0109, 0.0, 0.0]
['H3113010', 0.3053, 0.2576, 0.4209, 0.0, 0.0093, 0.0, 0.0068]
['H3113020', 0.3136, 0.4125, 0.2311, 0.0, 0.0252, 0.0, 0.0176]
['H3113310', 0.5016, 0.1166, 0.3819, 0.0, 0.0, 0.0, 0.0]
['H3203110', 0.6275, 0.1155, 0.1952, 0.0, 0.0617, 0.0, 0.0]
['H3203310', 0.4534, 0.0862, 0.4421, 0.0023, 0.016, 0.0, 0.0]
['H3923010', 0.33, 0.0244, 0.6097, 0.0, 0.0358, 0.0, 0.0]
['H4202020', 0.3305, 0.0, 0.6014, 0.0, 0.0682, 0.0, 0.0]
['H4223110', 0.4969, 0.0601, 0.3828, 0.0, 0.0602, 0.0, 0.0]
['H4232040', 0.3304, 0.0233, 0.4997, 0.0013, 0.1439, 0.0, 0.0016]
['H4243010', 0.3297, 0.0472, 0.3569, 0.0, 0.2664, 0.0, 0.0]
['H4252010', 0.3064, 0.0281, 0.454, 0.002, 0.2084, 0.0, 0.0011]
['H4333410', 0.4924, 0.0148, 0.3339, 0.0, 0.1588, 0.0, 0.0]
['H5033310', 0.3069, 0.2487, 0.4217, 0.0, 0.0227, 0.0, 0.0]
['H5033340', 0.3443, 0.2056, 0.4248, 0.0, 0.0254, 0.0, 0.0]
['H5042010', 0.3264, 0.3461, 0.3046, 0.0, 0.0228, 0.0, 0.0]
['H5062010', 0.4861, 0.1937, 0.3056, 0.0, 0.0146, 0.0, 0.0]
['H5071010', 0.3886, 0.1984, 0.3799, 0.0004, 0.0294, 0.0, 0.003]
['H5071040', 0.3898, 0.2036, 0.3771, 0.0004, 0.0257, 0.0, 0.0031]
['H5071050', 0.3795, 0.2204, 0.3705, 0.0005, 0.0252, 0.0, 0.0038]
['H5083020', 0.3883, 0.0913, 0.5205, 0.0, 0.0, 0.0, 0.0]
['H5083050', 0.3703, 0.1037, 0.5129, 0.0, 0.0109, 0.0, 0.0022]
['H5091010', 0.378, 0.171, 0.4103, 0.0036, 0.0284, 0.0007, 0.0077]
['H5102030', 0.3596, 0.147, 0.484, 0.0, 0.0095, 0.0, 0.0]
['H5112310', 0.4297, 0.1636, 0.3903, 0.0, 0.0166, 0.0, 0.0]
['H5122340', 0.3907, 0.1388, 0.4527, 0.0, 0.0176, 0.0, 0.0]
['H5122350', 0.3961, 0.1379, 0.4354, 0.0, 0.0305, 0.0, 0.0]
['H5172010', 0.3406, 0.1649, 0.4683, 0.0005, 0.0242, 0.0, 0.0014]
['H5173110', 0.4225, 0.1839, 0.386, 0.0, 0.0076, 0.0, 0.0]
['H5201010', 0.3186, 0.1481, 0.4974, 0.0024, 0.0281, 0.0004, 0.005]
['H5302010', 0.4039, 0.113, 0.4649, 0.0, 0.0182, 0.0, 0.0]
['H6021010', 0.4006, 0.361, 0.2251, 0.0, 0.0044, 0.0044, 0.0044]
['H6021020', 0.329, 0.3204, 0.325, 0.0, 0.0102, 0.0026, 0.013]
['H6053010', 0.6638, 0.3161, 0.0, 0.0, 0.0201, 0.0, 0.0]
['H6233110', 0.3499, 0.5036, 0.1166, 0.0, 0.03, 0.0, 0.0]
['H6423020', 0.3097, 0.1077, 0.5757, 0.0, 0.0068, 0.0, 0.0]
['H7021010', 0.4496, 0.426, 0.0974, 0.0, 0.0255, 0.0, 0.0]
['H7053010', 0.3397, 0.4842, 0.1244, 0.0, 0.0517, 0.0, 0.0]
['H7053110', 0.4854, 0.3869, 0.0797, 0.0, 0.048, 0.0, 0.0]
['H7302020', 0.447, 0.0275, 0.4756, 0.0, 0.0247, 0.0, 0.0252]
['H7322010', 0.4406, 0.0672, 0.4307, 0.0, 0.0501, 0.0, 0.0115]
['H7513010', 0.3243, 0.0093, 0.6001, 0.002, 0.0572, 0.0072, 0.0]
['H7513030', 0.4174, 0.0302, 0.431, 0.0, 0.1213, 0.0, 0.0]
['H7913210', 0.341, 0.0255, 0.194, 0.0022, 0.4373, 0.0, 0.0]
['H7913410', 0.5158, 0.096, 0.275, 0.0, 0.1132, 0.0, 0.0]
['H9113001', 0.4693, 0.0377, 0.4015, 0.0, 0.0915, 0.0, 0.0]
['I0102010', 0.4521, 0.3948, 0.1379, 0.0, 0.0152, 0.0, 0.0]
['I6943010', 0.3859, 0.3957, 0.1774, 0.0, 0.0411, 0.0, 0.0]
['J2603010', 0.3177, 0.0647, 0.5599, 0.0, 0.0577, 0.0, 0.0]
['J8632410', 0.334, 0.1487, 0.4711, 0.0, 0.0435, 0.0, 0.0029]
['K0010010', 0.4303, 0.5527, 0.0169, 0.0, 0.0, 0.0, 0.0]
['K0100020', 0.4069, 0.49, 0.0986, 0.0023, 0.0, 0.0, 0.0023]
['K0120020', 0.3407, 0.4957, 0.1544, 0.0014, 0.0049, 0.0, 0.0029]
['K0220010', 0.3246, 0.5083, 0.154, 0.0015, 0.0093, 0.0, 0.0023]
['K0243010', 0.3929, 0.2383, 0.3492, 0.0, 0.0134, 0.0, 0.0062]
['K0323010', 0.4453, 0.2065, 0.3361, 0.0, 0.0121, 0.0, 0.0]
['K0333010', 0.4763, 0.2391, 0.2782, 0.0, 0.0065, 0.0, 0.0]
['K0454010', 0.5438, 0.2982, 0.1481, 0.0, 0.0098, 0.0, 0.0]
['K0454020', 0.5926, 0.2258, 0.1745, 0.0, 0.0071, 0.0, 0.0]
['K0513010', 0.5599, 0.3558, 0.0844, 0.0, 0.0, 0.0, 0.0]
['K0523010', 0.4777, 0.3, 0.2179, 0.0, 0.0044, 0.0, 0.0]
['K0550010', 0.3703, 0.3801, 0.2292, 0.0009, 0.0181, 0.0, 0.0012]
['K0567520', 0.3462, 0.3556, 0.2855, 0.0, 0.0128, 0.0, 0.0]
['K0567530', 0.3846, 0.2582, 0.328, 0.0, 0.0291, 0.0, 0.0]
['K0568310', 0.3791, 0.0, 0.6209, 0.0, 0.0, 0.0, 0.0]
['K0624510', 0.3393, 0.3843, 0.2764, 0.0, 0.0, 0.0, 0.0]
['K0643110', 0.5521, 0.3504, 0.0975, 0.0, 0.0, 0.0, 0.0]
['K0690010', 0.3352, 0.3795, 0.2397, 0.0016, 0.0416, 0.0, 0.0023]
['K0700010', 0.3247, 0.3841, 0.2446, 0.002, 0.0415, 0.0, 0.003]
['K0733220', 0.4827, 0.5173, 0.0, 0.0, 0.0, 0.0, 0.0]
['K0744010', 0.5119, 0.3954, 0.0756, 0.0, 0.0171, 0.0, 0.0]
['K0753210', 0.5015, 0.4285, 0.0536, 0.0, 0.0164, 0.0, 0.0]
['K0763310', 0.4794, 0.4956, 0.025, 0.0, 0.0, 0.0, 0.0]
['K0813010', 0.4452, 0.4116, 0.1194, 0.0, 0.0239, 0.0, 0.0]
['K0813020', 0.4287, 0.4264, 0.1211, 0.0, 0.024, 0.0, 0.0]
['K0910010', 0.3108, 0.4089, 0.2342, 0.0018, 0.0393, 0.0, 0.0051]
['K0943010', 0.4842, 0.3884, 0.1085, 0.0, 0.0189, 0.0, 0.0]
['K1084010', 0.6151, 0.3691, 0.0157, 0.0, 0.0, 0.0, 0.0]
['K1273110', 0.5526, 0.3871, 0.0476, 0.0, 0.005, 0.0, 0.0076]
['K1294510', 0.6162, 0.3077, 0.0596, 0.0, 0.0165, 0.0, 0.0]
['K1314010', 0.4096, 0.4698, 0.0651, 0.005, 0.0452, 0.0, 0.0054]
['K1321810', 0.3701, 0.485, 0.1182, 0.0011, 0.0223, 0.0, 0.0033]
['K1341810', 0.3355, 0.511, 0.1269, 0.0022, 0.0219, 0.0, 0.0024]
['K1524010', 0.448, 0.5047, 0.0419, 0.0, 0.0055, 0.0, 0.0]
['K1533010', 0.5086, 0.4009, 0.0827, 0.0, 0.0052, 0.0, 0.0028]
['K1533020', 0.4397, 0.4385, 0.1095, 0.0, 0.01, 0.0, 0.0022]
['K1563020', 0.3162, 0.4918, 0.178, 0.0, 0.0126, 0.0, 0.0014]
['K1724210', 0.3808, 0.5727, 0.0465, 0.0, 0.0, 0.0, 0.0]
['K1943010', 0.576, 0.2458, 0.1782, 0.0, 0.0, 0.0, 0.0]
['K1954010', 0.4061, 0.395, 0.1945, 0.0, 0.0044, 0.0, 0.0]
['K2010820', 0.6295, 0.331, 0.0396, 0.0, 0.0, 0.0, 0.0]
['K2064010', 0.6441, 0.2564, 0.0839, 0.0, 0.0155, 0.0, 0.0]
['K2070810', 0.5684, 0.3747, 0.0505, 0.0, 0.0063, 0.0, 0.0]
['K2080820', 0.5279, 0.3777, 0.0563, 0.0, 0.0101, 0.0, 0.0278]
['K2090810', 0.448, 0.3896, 0.1333, 0.0, 0.0077, 0.0, 0.0214]
['K2123010', 0.3096, 0.5767, 0.1138, 0.0, 0.0, 0.0, 0.0]
['K2134010', 0.3835, 0.5563, 0.0601, 0.0, 0.0, 0.0, 0.0]
['K2143020', 0.3881, 0.5294, 0.0823, 0.0, 0.0, 0.0, 0.0]
['K2163110', 0.3218, 0.4654, 0.2127, 0.0, 0.0, 0.0, 0.0]
['K2173020', 0.3929, 0.4831, 0.1242, 0.0, 0.0, 0.0, 0.0]
['K2223020', 0.51, 0.3786, 0.1116, 0.0, 0.0, 0.0, 0.0]
['K2223030', 0.4761, 0.3995, 0.1243, 0.0, 0.0, 0.0, 0.0]
['K2234020', 0.6542, 0.3183, 0.0275, 0.0, 0.0, 0.0, 0.0]
['K2240820', 0.4407, 0.4075, 0.1406, 0.0, 0.0029, 0.0, 0.0081]
['K2254010', 0.4365, 0.3626, 0.1925, 0.0, 0.0085, 0.0, 0.0]
['K2283110', 0.6497, 0.2633, 0.0869, 0.0, 0.0, 0.0, 0.0]
['K2300810', 0.4447, 0.3897, 0.1543, 0.0, 0.0049, 0.0006, 0.0061]
['K2316210', 0.5448, 0.2804, 0.1748, 0.0, 0.0, 0.0, 0.0]
['K2330810', 0.4417, 0.3794, 0.1695, 0.0, 0.0039, 0.0004, 0.0049]
['K2335510', 0.3663, 0.4206, 0.2131, 0.0, 0.0, 0.0, 0.0]
['K2363010', 0.6206, 0.1803, 0.1983, 0.0, 0.0, 0.0, 0.0008]
['K2430810', 0.4584, 0.3538, 0.1773, 0.0, 0.0064, 0.0003, 0.0037]
['K2450810', 0.458, 0.3493, 0.1804, 0.0, 0.0085, 0.0003, 0.0036]
['K2534010', 0.325, 0.4635, 0.2115, 0.0, 0.0, 0.0, 0.0]
['K2544010', 0.317, 0.4956, 0.1875, 0.0, 0.0, 0.0, 0.0]
['K2644010', 0.4361, 0.4313, 0.1326, 0.0, 0.0, 0.0, 0.0]
['K2654010', 0.3235, 0.4341, 0.229, 0.0, 0.0045, 0.0, 0.009]
['K2680810', 0.3747, 0.3955, 0.2165, 0.0004, 0.0101, 0.0004, 0.0024]
['K2680820', 0.3773, 0.3997, 0.2101, 0.0004, 0.0098, 0.0004, 0.0024]
['K2753010', 0.3284, 0.2973, 0.3374, 0.0, 0.0218, 0.0, 0.0151]
['K2756110', 0.3642, 0.2369, 0.339, 0.0, 0.0214, 0.0, 0.0384]
['K2790810', 0.3288, 0.3569, 0.2796, 0.0015, 0.0303, 0.0002, 0.0027]
['K2851910', 0.6504, 0.1918, 0.1483, 0.0, 0.0096, 0.0, 0.0]
['K2871910', 0.6333, 0.2415, 0.1142, 0.0, 0.011, 0.0, 0.0]
['K2884010', 0.6688, 0.2561, 0.0751, 0.0, 0.0, 0.0, 0.0]
['K2944010', 0.5981, 0.3154, 0.0866, 0.0, 0.0, 0.0, 0.0]
['K2981910', 0.5679, 0.286, 0.1255, 0.0001, 0.0206, 0.0, 0.0]
['K3030810', 0.3707, 0.3384, 0.2581, 0.0015, 0.0287, 0.0002, 0.0021]
['K3053100', 0.5812, 0.3073, 0.1114, 0.0, 0.0, 0.0, 0.0]
['K3060310', 0.4265, 0.4516, 0.1213, 0.0001, 0.0006, 0.0, 0.0]
['K3273010', 0.3231, 0.4521, 0.214, 0.0, 0.0064, 0.0, 0.0043]
['K3302010', 0.3125, 0.4805, 0.1964, 0.0, 0.0057, 0.0, 0.005]
['K3322010', 0.3171, 0.4653, 0.2063, 0.0002, 0.0068, 0.0, 0.0043]
['K4443010', 0.5215, 0.1117, 0.3384, 0.0055, 0.023, 0.0, 0.0]
['K4672210', 0.5159, 0.0443, 0.4076, 0.0, 0.012, 0.0, 0.0202]
['K4856020', 0.388, 0.0164, 0.5956, 0.0, 0.0, 0.0, 0.0]
['K4923030', 0.3204, 0.083, 0.5564, 0.0, 0.0403, 0.0, 0.0]
['K5424010', 0.3893, 0.4359, 0.1618, 0.0, 0.0019, 0.0, 0.0111]
['K6334010', 0.3679, 0.0856, 0.5187, 0.0, 0.0148, 0.0, 0.013]
['K6373020', 0.3764, 0.2196, 0.3945, 0.0, 0.0062, 0.0, 0.0031]
['K6402520', 0.3699, 0.2327, 0.3808, 0.0, 0.0125, 0.0, 0.004]
['K6492510', 0.4804, 0.1427, 0.351, 0.0018, 0.0179, 0.0, 0.006]
['L0010610', 0.4003, 0.4364, 0.1289, 0.0, 0.0332, 0.0012, 0.0]
['L0050630', 0.5163, 0.2961, 0.1718, 0.0, 0.013, 0.0028, 0.0]
['L0093020', 0.4704, 0.3768, 0.1412, 0.0, 0.0115, 0.0, 0.0]
['L0140610', 0.4795, 0.3268, 0.1704, 0.0, 0.0095, 0.0009, 0.013]
['L0140620', 0.4798, 0.3284, 0.1676, 0.0, 0.0098, 0.0009, 0.0133]
['L0201510', 0.4889, 0.3613, 0.1243, 0.0, 0.0, 0.0, 0.0256]
['L0231510', 0.5944, 0.2413, 0.1566, 0.0, 0.0, 0.0, 0.0078]
['L0314010', 0.4778, 0.329, 0.1857, 0.0, 0.0076, 0.0, 0.0]
['L0321510', 0.5257, 0.2884, 0.1727, 0.0, 0.0091, 0.0, 0.0039]
['L0400610', 0.4945, 0.3064, 0.1764, 0.0, 0.0128, 0.0004, 0.0096]
['L0700610', 0.3891, 0.3154, 0.2546, 0.0, 0.033, 0.0003, 0.0077]
['L0920610', 0.3626, 0.3231, 0.2744, 0.0005, 0.0322, 0.0002, 0.007]
['L0940610', 0.3518, 0.3273, 0.2796, 0.0005, 0.0326, 0.0002, 0.0082]
['L2334010', 0.3073, 0.0539, 0.6022, 0.0, 0.0366, 0.0, 0.0]
['L4010710', 0.4562, 0.3876, 0.1562, 0.0, 0.0, 0.0, 0.0]
['L4033010', 0.4386, 0.4142, 0.1392, 0.0, 0.0081, 0.0, 0.0]
['L4110710', 0.4049, 0.4013, 0.1845, 0.0, 0.0094, 0.0, 0.0]
['L4210710', 0.383, 0.3892, 0.2039, 0.001, 0.0229, 0.0, 0.0]
['L4220710', 0.3563, 0.3922, 0.2313, 0.0008, 0.0185, 0.0, 0.0008]
['L5034010', 0.416, 0.3897, 0.1715, 0.0, 0.0228, 0.0, 0.0]
['L5101810', 0.3263, 0.4052, 0.2509, 0.0, 0.0176, 0.0, 0.0]
['L5223010', 0.3327, 0.4338, 0.2081, 0.009, 0.0092, 0.0, 0.0072]
['L5223020', 0.3188, 0.4458, 0.2, 0.0085, 0.02, 0.0, 0.0069]
['L5301810', 0.3069, 0.4141, 0.2523, 0.0035, 0.0179, 0.0, 0.005]
['L9004010', 0.6209, 0.0811, 0.298, 0.0, 0.0, 0.0, 0.0]
['L9006210', 0.5242, 0.1336, 0.2637, 0.0, 0.0609, 0.0, 0.0177]
['M0424810', 0.4186, 0.2441, 0.3307, 0.0, 0.0066, 0.0, 0.0]
['M0544010', 0.3947, 0.3263, 0.2654, 0.0, 0.0138, 0.0, 0.0]
['O0015310', 0.4586, 0.1691, 0.3159, 0.0564, 0.0, 0.0, 0.0]
['O0362510', 0.4774, 0.2573, 0.1864, 0.0761, 0.0026, 0.0, 0.0]
['O0384010', 0.5692, 0.3847, 0.0462, 0.0, 0.0, 0.0, 0.0]
['O0444010', 0.4227, 0.2757, 0.1876, 0.1046, 0.0046, 0.0, 0.0048]
['O0484010', 0.5082, 0.2822, 0.1414, 0.0598, 0.0054, 0.0, 0.0027]
['O0502520', 0.5039, 0.3043, 0.1416, 0.0441, 0.0052, 0.0, 0.0009]
['O0554010', 0.6067, 0.2147, 0.1677, 0.0, 0.0108, 0.0, 0.0]
['O0584310', 0.4758, 0.2764, 0.2479, 0.0, 0.0, 0.0, 0.0]
['O0592510', 0.5108, 0.2949, 0.1694, 0.0136, 0.0102, 0.0, 0.0013]
['O0624010', 0.4907, 0.2687, 0.2405, 0.0, 0.0, 0.0, 0.0]
['O0744030', 0.4916, 0.3029, 0.1965, 0.0, 0.0092, 0.0, 0.0]
['O0794010', 0.3625, 0.3169, 0.3123, 0.0, 0.0063, 0.0, 0.0021]
['O1252510', 0.3391, 0.3726, 0.1791, 0.0956, 0.01, 0.0, 0.0037]
['O1442910', 0.6288, 0.2875, 0.0628, 0.0112, 0.0098, 0.0, 0.0]
['O1484310', 0.6433, 0.1722, 0.1696, 0.0, 0.0149, 0.0, 0.0]
['O1484320', 0.6697, 0.2518, 0.0785, 0.0, 0.0, 0.0, 0.0]
['O1494330', 0.5472, 0.2052, 0.1904, 0.0, 0.0572, 0.0, 0.0]
['O1524010', 0.5843, 0.1347, 0.281, 0.0, 0.0, 0.0, 0.0]
['O1532910', 0.5844, 0.2121, 0.1751, 0.0037, 0.0145, 0.0, 0.0102]
['O1584610', 0.5542, 0.2689, 0.1768, 0.0, 0.0, 0.0, 0.0]
['O1652920', 0.4026, 0.1961, 0.3836, 0.0033, 0.01, 0.0, 0.0046]
['O1662910', 0.3814, 0.1859, 0.4111, 0.006, 0.0112, 0.0, 0.0044]
['O1712510', 0.35, 0.261, 0.3269, 0.0422, 0.0166, 0.0, 0.0035]
['O1814040', 0.3737, 0.3783, 0.248, 0.0, 0.0, 0.0, 0.0]
['O1900010', 0.3495, 0.2432, 0.314, 0.0386, 0.0171, 0.0002, 0.0033]
['O3011010', 0.41, 0.5899, 0.0, 0.0, 0.0, 0.0, 0.0]
['O3015520', 0.3291, 0.6228, 0.0481, 0.0, 0.0, 0.0, 0.0]
['O3031010', 0.4366, 0.5476, 0.0157, 0.0, 0.0, 0.0, 0.0]
['O3084320', 0.6191, 0.3695, 0.0114, 0.0, 0.0, 0.0, 0.0]
['O3121010', 0.4552, 0.472, 0.0679, 0.0, 0.005, 0.0, 0.0]
['O3141010', 0.4287, 0.4447, 0.1224, 0.0011, 0.0032, 0.0, 0.0]
['O3165010', 0.6315, 0.2463, 0.1221, 0.0, 0.0, 0.0, 0.0]
['O3194010', 0.6376, 0.282, 0.0804, 0.0, 0.0, 0.0, 0.0]
['O3364010', 0.5828, 0.3147, 0.0961, 0.0, 0.0064, 0.0, 0.0]
['O3394030', 0.4806, 0.3969, 0.1171, 0.0, 0.0054, 0.0, 0.0]
['O3401010', 0.4378, 0.4024, 0.1514, 0.0011, 0.0074, 0.0, 0.0]
['O3454310', 0.367, 0.3985, 0.2213, 0.0, 0.0132, 0.0, 0.0]
['O3584620', 0.3607, 0.3764, 0.2629, 0.0, 0.0, 0.0, 0.0]
['O3594020', 0.4599, 0.2566, 0.2806, 0.0, 0.003, 0.0, 0.0]
['O3754010', 0.3622, 0.1959, 0.4419, 0.0, 0.0, 0.0, 0.0]
['O3774010', 0.3471, 0.1672, 0.4856, 0.0, 0.0, 0.0, 0.0]
['O4102510', 0.6978, 0.2994, 0.0029, 0.0, 0.0, 0.0, 0.0]
['O4194310', 0.6057, 0.2631, 0.1311, 0.0, 0.0, 0.0, 0.0]
['O4222520', 0.5675, 0.271, 0.149, 0.0035, 0.0034, 0.0, 0.0055]
['O4344310', 0.6581, 0.2689, 0.0731, 0.0, 0.0, 0.0, 0.0]
['O4394010', 0.6489, 0.2192, 0.106, 0.0018, 0.0187, 0.0, 0.0054]
['O4524010', 0.3067, 0.1664, 0.4968, 0.0, 0.0191, 0.0, 0.011]
['O4692550', 0.4235, 0.1967, 0.3563, 0.0023, 0.0173, 0.0, 0.0039]
['O4704030', 0.4703, 0.3442, 0.1854, 0.0, 0.0, 0.0, 0.0]
['O4931010', 0.3499, 0.2521, 0.3769, 0.0024, 0.0152, 0.0, 0.0035]
['O5055010', 0.368, 0.4474, 0.1635, 0.0, 0.021, 0.0, 0.0]
['O5754020', 0.3518, 0.335, 0.309, 0.001, 0.0032, 0.0, 0.0]
['O5854010', 0.3014, 0.1981, 0.4901, 0.0026, 0.0078, 0.0, 0.0]
['O7001510', 0.5462, 0.418, 0.0357, 0.0, 0.0, 0.0, 0.0]
['O7011510', 0.5175, 0.3743, 0.1081, 0.0, 0.0, 0.0, 0.0]
['O7015810', 0.6301, 0.2828, 0.0871, 0.0, 0.0, 0.0, 0.0]
['O7021530', 0.5172, 0.3391, 0.1263, 0.0, 0.0173, 0.0, 0.0]
['O7035010', 0.4692, 0.408, 0.1228, 0.0, 0.0, 0.0, 0.0]
['O7041510', 0.5006, 0.3488, 0.14, 0.0, 0.0105, 0.0, 0.0]
['O7054010', 0.3645, 0.3854, 0.2276, 0.0, 0.0, 0.0, 0.0225]
['O7085010', 0.4656, 0.2564, 0.2779, 0.0, 0.0, 0.0, 0.0]
['O7094010', 0.3826, 0.3565, 0.2545, 0.0, 0.0021, 0.0, 0.0043]
['O7101510', 0.4376, 0.3515, 0.2031, 0.0, 0.0062, 0.0, 0.0017]
['O7110502', 0.4404, 0.491, 0.0685, 0.0, 0.0, 0.0, 0.0]
['O7145220', 0.4184, 0.5434, 0.0382, 0.0, 0.0, 0.0, 0.0]
['O7191510', 0.4391, 0.3989, 0.1527, 0.0, 0.0071, 0.0, 0.0023]
['O7202510', 0.4226, 0.3661, 0.2106, 0.0, 0.0007, 0.0, 0.0]
['O7245010', 0.3462, 0.3059, 0.3084, 0.0, 0.0396, 0.0, 0.0]
['O7265010', 0.4228, 0.42, 0.1571, 0.0, 0.0, 0.0, 0.0]
['O7701510', 0.4413, 0.4002, 0.1489, 0.0, 0.0073, 0.0, 0.0023]
['O7911510', 0.3413, 0.4525, 0.1923, 0.0004, 0.0074, 0.0016, 0.0046]
['O7944020', 0.3368, 0.3729, 0.191, 0.0265, 0.0729, 0.0, 0.0]
['O7971510', 0.3368, 0.4445, 0.2026, 0.0008, 0.0088, 0.0014, 0.0048]
['O7991510', 0.3344, 0.442, 0.2072, 0.0008, 0.0088, 0.0014, 0.0053]
['O8113510', 0.3633, 0.234, 0.386, 0.0015, 0.0153, 0.0, 0.0]
['O8133520', 0.3608, 0.3214, 0.3058, 0.0008, 0.0113, 0.0, 0.0]
['O8231530', 0.3571, 0.4089, 0.2183, 0.0012, 0.0086, 0.0011, 0.0048]
['O8255010', 0.5668, 0.1331, 0.285, 0.015, 0.0, 0.0, 0.0]
['O8264010', 0.3831, 0.2088, 0.393, 0.0, 0.0152, 0.0, 0.0]
['O8344020', 0.5974, 0.0408, 0.3618, 0.0, 0.0, 0.0, 0.0]
['O8394310', 0.6858, 0.0934, 0.2162, 0.0, 0.0046, 0.0, 0.0]
['O9196210', 0.4365, 0.1026, 0.4608, 0.0, 0.0, 0.0, 0.0]
['O9424010', 0.3507, 0.1171, 0.5006, 0.0, 0.0317, 0.0, 0.0]
['O9675010', 0.6974, 0.2272, 0.0754, 0.0, 0.0, 0.0, 0.0]
['P0010010', 0.4144, 0.5457, 0.0058, 0.0, 0.0341, 0.0, 0.0]
['P0084010', 0.3571, 0.4055, 0.2191, 0.0, 0.0079, 0.0026, 0.0079]
['P0115010', 0.3752, 0.5771, 0.0477, 0.0, 0.0, 0.0, 0.0]
['P0115020', 0.3671, 0.5452, 0.0847, 0.0, 0.0, 0.0029, 0.0]
['P0212510', 0.312, 0.5993, 0.0808, 0.0, 0.0, 0.0, 0.0078]
['P0714010', 0.5822, 0.3196, 0.0854, 0.0, 0.0086, 0.0043, 0.0]
['P0885010', 0.3893, 0.5344, 0.0612, 0.0083, 0.0069, 0.0, 0.0]
['P0885020', 0.5232, 0.4288, 0.0, 0.0479, 0.0, 0.0, 0.0]
['P0924010', 0.5446, 0.3759, 0.0588, 0.0, 0.0209, 0.0, 0.0]
['P1114010', 0.5366, 0.2817, 0.1287, 0.0232, 0.0299, 0.0, 0.0]
['P1144310', 0.6524, 0.1571, 0.1635, 0.0082, 0.0186, 0.0002, 0.0]
['P1154010', 0.6295, 0.2118, 0.1281, 0.0118, 0.0187, 0.0001, 0.0]
['P1350020', 0.4283, 0.4472, 0.101, 0.0014, 0.0113, 0.0014, 0.0093]
['P1454010', 0.3972, 0.5371, 0.0494, 0.0, 0.0163, 0.0, 0.0]
['P1592510', 0.4119, 0.4484, 0.1261, 0.0025, 0.0074, 0.0, 0.0037]
['P1630010', 0.4306, 0.4431, 0.1035, 0.0016, 0.011, 0.0012, 0.0092]
['P1650010', 0.4311, 0.4429, 0.1031, 0.0016, 0.011, 0.001, 0.0094]
['P1712910', 0.3977, 0.5374, 0.0166, 0.0034, 0.045, 0.0, 0.0]
['P1744010', 0.3662, 0.4876, 0.0976, 0.0075, 0.0412, 0.0, 0.0]
['P1780510', 0.5351, 0.071, 0.3938, 0.0, 0.0, 0.0, 0.0]
['P1962910', 0.3542, 0.3791, 0.2238, 0.0009, 0.0371, 0.0, 0.0045]
['P2054010', 0.4694, 0.2733, 0.2465, 0.0, 0.0109, 0.0, 0.0]
['P2070010', 0.418, 0.4257, 0.1301, 0.0013, 0.0155, 0.0008, 0.0084]
['P2114010', 0.4191, 0.3513, 0.2297, 0.0, 0.0, 0.0, 0.0]
['P2274020', 0.3186, 0.3777, 0.2888, 0.0, 0.0149, 0.0, 0.0]
['P2300010', 0.4055, 0.4175, 0.1507, 0.0018, 0.0152, 0.0008, 0.0084]
['P2315020', 0.6596, 0.1195, 0.2209, 0.0, 0.0, 0.0, 0.0]
['P2380010', 0.4134, 0.395, 0.1645, 0.0017, 0.0155, 0.0008, 0.009]
['P2454310', 0.4758, 0.0685, 0.448, 0.0, 0.0077, 0.0, 0.0]
['P2464010', 0.4078, 0.2279, 0.3468, 0.0057, 0.0118, 0.0, 0.0]
['P2484010', 0.4396, 0.1881, 0.3556, 0.0043, 0.0122, 0.0, 0.0]
['P2580010', 0.4169, 0.3766, 0.1797, 0.0019, 0.0151, 0.0007, 0.0089]
['P3001010', 0.3155, 0.4677, 0.1957, 0.0, 0.0, 0.0212, 0.0]
['P3015410', 0.5093, 0.3818, 0.1088, 0.0, 0.0, 0.0, 0.0]
['P3021010', 0.4553, 0.3799, 0.1577, 0.0, 0.0, 0.0071, 0.0]
['P3064010', 0.4354, 0.3955, 0.1444, 0.0, 0.0124, 0.0, 0.0124]
['P3131020', 0.4034, 0.3326, 0.2501, 0.0, 0.0056, 0.0017, 0.0066]
['P3201020', 0.3393, 0.3458, 0.3013, 0.0, 0.0085, 0.001, 0.004]
['P3245010', 0.3093, 0.2506, 0.4206, 0.0, 0.0195, 0.0, 0.0]
['P3322510', 0.6567, 0.2823, 0.0425, 0.0, 0.0, 0.0184, 0.0]
['P3352510', 0.604, 0.2994, 0.0908, 0.0, 0.0, 0.006, 0.0]
['P3464010', 0.4842, 0.3483, 0.1674, 0.0, 0.0, 0.0, 0.0]
['P3502510', 0.5519, 0.3087, 0.1328, 0.0024, 0.0014, 0.0027, 0.0]
['P3522510', 0.5514, 0.3085, 0.1327, 0.0024, 0.0022, 0.0027, 0.0]
['P3614010', 0.4763, 0.4153, 0.0743, 0.0341, 0.0, 0.0, 0.0]
['P3674010', 0.5781, 0.2823, 0.1085, 0.0167, 0.0097, 0.0, 0.0047]
['P3844010', 0.5481, 0.3293, 0.1132, 0.0, 0.0093, 0.0, 0.0]
['P3922510', 0.4884, 0.2974, 0.1671, 0.0046, 0.0402, 0.001, 0.001]
['P4001010', 0.3668, 0.3101, 0.2899, 0.0018, 0.0281, 0.0008, 0.0024]
['P4015010', 0.5807, 0.3376, 0.0819, 0.0, 0.0, 0.0, 0.0]
['P4074010', 0.4742, 0.1988, 0.3179, 0.0, 0.0091, 0.0, 0.0]
['P4114010', 0.3666, 0.2696, 0.34, 0.0, 0.0239, 0.0, 0.0]
['P4161020', 0.3817, 0.2833, 0.3039, 0.002, 0.0261, 0.0006, 0.0022]
['P5404010', 0.6638, 0.0505, 0.2856, 0.0, 0.0, 0.0, 0.0]
['P6081510', 0.3148, 0.1853, 0.4921, 0.0, 0.0078, 0.0, 0.0]
['P6161510', 0.3298, 0.1527, 0.5025, 0.0, 0.0149, 0.0, 0.0]
['P6161520', 0.3536, 0.1413, 0.4899, 0.0011, 0.0141, 0.0, 0.0]
['P6202510', 0.3019, 0.3029, 0.3953, 0.0, 0.0, 0.0, 0.0]
['P6382510', 0.3467, 0.161, 0.4777, 0.0, 0.0123, 0.0, 0.0023]
['P7001510', 0.3521, 0.1514, 0.4812, 0.0005, 0.0134, 0.0, 0.0011]
['P7041510', 0.368, 0.1403, 0.4689, 0.001, 0.0211, 0.0, 0.0009]
['P7121510', 0.4008, 0.1349, 0.4386, 0.001, 0.0242, 0.0, 0.0007]
['P7181520', 0.4143, 0.1317, 0.4291, 0.0012, 0.0231, 0.0, 0.0006]
['P7261510', 0.4132, 0.1357, 0.4236, 0.0016, 0.0225, 0.0, 0.0033]
['P8012510', 0.374, 0.1717, 0.451, 0.0, 0.0031, 0.0, 0.0]
['P8022520', 0.3722, 0.1633, 0.4595, 0.0, 0.0049, 0.0, 0.0]
['P8074010', 0.3576, 0.0825, 0.5269, 0.0057, 0.0216, 0.0, 0.0057]
['P8102510', 0.4244, 0.0881, 0.4738, 0.0017, 0.0104, 0.0, 0.0017]
['P8162520', 0.4084, 0.0859, 0.4952, 0.0018, 0.0077, 0.0, 0.0009]
['P8284010', 0.3243, 0.0886, 0.5818, 0.0, 0.0054, 0.0, 0.0]
['P8312520', 0.352, 0.0895, 0.5465, 0.0011, 0.0104, 0.0, 0.0005]
['P8462510', 0.3697, 0.0923, 0.524, 0.0011, 0.0123, 0.0, 0.0007]
['P9274010', 0.5735, 0.1938, 0.2057, 0.0034, 0.0238, 0.0, 0.0]
['P9414010', 0.5547, 0.2449, 0.1933, 0.0, 0.0072, 0.0, 0.0]
['Q0120050', 0.3069, 0.4866, 0.1006, 0.0911, 0.0149, 0.0, 0.0]
['Q0214010', 0.3122, 0.3581, 0.3212, 0.0, 0.0084, 0.0, 0.0]
['Q0435010', 0.3294, 0.0, 0.6289, 0.0, 0.0416, 0.0, 0.0]
['Q0522520', 0.5332, 0.2772, 0.1787, 0.0, 0.011, 0.0, 0.0]
['Q0522530', 0.4769, 0.2495, 0.2629, 0.0, 0.0107, 0.0, 0.0]
['Q0554010', 0.4492, 0.3518, 0.199, 0.0, 0.0, 0.0, 0.0]
['Q0612510', 0.4018, 0.1997, 0.3826, 0.0, 0.0159, 0.0, 0.0]
['Q2292910', 0.3239, 0.1687, 0.4985, 0.0, 0.0022, 0.0, 0.0067]
['Q2364010', 0.6972, 0.1003, 0.1992, 0.0, 0.0033, 0.0, 0.0]
['Q2593310', 0.5081, 0.1176, 0.3537, 0.0008, 0.0179, 0.0, 0.002]
['Q3120010', 0.371, 0.1129, 0.4801, 0.0082, 0.0242, 0.0002, 0.0031]
['Q5114010', 0.3274, 0.09, 0.4995, 0.002, 0.0812, 0.0, 0.0]
['Q6142910', 0.3562, 0.3535, 0.1814, 0.0952, 0.0097, 0.0, 0.0041]
['Q7002910', 0.3949, 0.3861, 0.1385, 0.0698, 0.0087, 0.0, 0.0018]
['Q7322510', 0.4369, 0.4365, 0.1142, 0.002, 0.0102, 0.0, 0.0]
['Q7412910', 0.3777, 0.3448, 0.229, 0.0329, 0.0141, 0.0, 0.0014]
['Q9034610', 0.3686, 0.5765, 0.0549, 0.0, 0.0, 0.0, 0.0]
['Q9312510', 0.337, 0.5423, 0.1086, 0.0, 0.0107, 0.0, 0.0]
['R1132510', 0.4173, 0.2263, 0.3524, 0.0, 0.0041, 0.0, 0.0]
['R1192510', 0.4352, 0.2103, 0.3443, 0.0, 0.0069, 0.0, 0.0033]
['S2134010', 0.6045, 0.2658, 0.1272, 0.0, 0.0026, 0.0, 0.0]
['U0020010', 0.5641, 0.2234, 0.2081, 0.0, 0.0043, 0.0, 0.0]
['U0104010', 0.4748, 0.1679, 0.3357, 0.0, 0.0216, 0.0, 0.0]
['U0124010', 0.4172, 0.1527, 0.3985, 0.0, 0.0316, 0.0, 0.0]
['U0230010', 0.422, 0.2394, 0.3204, 0.0, 0.0183, 0.0, 0.0]
['U0234010', 0.3332, 0.4476, 0.2075, 0.0, 0.0118, 0.0, 0.0]
['U0415010', 0.5998, 0.1838, 0.2084, 0.0, 0.0, 0.0, 0.0079]
['U0415030', 0.5673, 0.1623, 0.217, 0.0045, 0.0445, 0.0, 0.0041]
['U0444310', 0.4813, 0.1998, 0.2969, 0.0018, 0.0201, 0.0, 0.0]
['U0455010', 0.6998, 0.1119, 0.1882, 0.0, 0.0, 0.0, 0.0]
['U0460510', 0.4276, 0.3273, 0.1899, 0.0, 0.0352, 0.0, 0.0199]
['U0474010', 0.4884, 0.2032, 0.2711, 0.0049, 0.0294, 0.0, 0.0031]
['U0525010', 0.4584, 0.2115, 0.3139, 0.0, 0.0163, 0.0, 0.0]
['U0534020', 0.3967, 0.2103, 0.3324, 0.0, 0.0581, 0.0, 0.0024]
['U0610010', 0.4147, 0.2487, 0.3078, 0.0013, 0.0255, 0.0003, 0.0016]
['U0635010', 0.3734, 0.2053, 0.4015, 0.0, 0.0199, 0.0, 0.0]
['U0704010', 0.4075, 0.3824, 0.1853, 0.0, 0.0249, 0.0, 0.0]
['U0724010', 0.3453, 0.2958, 0.338, 0.0, 0.0208, 0.0, 0.0]
['U0820010', 0.3979, 0.2366, 0.3364, 0.0014, 0.0251, 0.0002, 0.0024]
['U1035410', 0.589, 0.1205, 0.2816, 0.0, 0.0088, 0.0, 0.0]
['U1044010', 0.5614, 0.1492, 0.2516, 0.0036, 0.0311, 0.0, 0.0033]
['U1054010', 0.5147, 0.1651, 0.2902, 0.0023, 0.0248, 0.0, 0.003]
['U1074010', 0.5002, 0.1552, 0.3101, 0.0017, 0.0294, 0.0006, 0.0029]
['U1074020', 0.505, 0.1547, 0.3059, 0.0018, 0.029, 0.0006, 0.003]
['U1084010', 0.4648, 0.1684, 0.332, 0.002, 0.0294, 0.0005, 0.0029]
['U1109010', 0.5015, 0.1367, 0.3245, 0.0, 0.0194, 0.0178, 0.0]
['U1120010', 0.4013, 0.206, 0.3615, 0.0016, 0.0259, 0.0003, 0.0032]
['U1204010', 0.4929, 0.1516, 0.3513, 0.0, 0.0044, 0.0, 0.0]
['U1215030', 0.6381, 0.0505, 0.295, 0.0, 0.0164, 0.0, 0.0]
['U1224010', 0.5059, 0.0783, 0.4008, 0.0006, 0.0143, 0.0, 0.0]
['U1224020', 0.4917, 0.0755, 0.4163, 0.0007, 0.0145, 0.0, 0.0014]
['U1244040', 0.4105, 0.0601, 0.4869, 0.0056, 0.0344, 0.0008, 0.0016]
['U1314010', 0.3186, 0.4371, 0.2235, 0.0, 0.014, 0.0, 0.0068]
['U1314020', 0.395, 0.3688, 0.2184, 0.0, 0.0132, 0.0, 0.0047]
['U1324010', 0.4275, 0.2936, 0.2542, 0.0, 0.0199, 0.0, 0.0047]
['U1329010', 0.5737, 0.0592, 0.3671, 0.0, 0.0, 0.0, 0.0]
['U1329020', 0.5523, 0.0458, 0.3834, 0.0, 0.0186, 0.0, 0.0]
['U1329030', 0.499, 0.0752, 0.4258, 0.0, 0.0, 0.0, 0.0]
['U1334010', 0.4026, 0.2251, 0.3017, 0.0, 0.066, 0.0, 0.0045]
['U1334020', 0.4136, 0.2322, 0.2849, 0.0, 0.0645, 0.0, 0.0045]
['U1415030', 0.4254, 0.1195, 0.4165, 0.0, 0.0295, 0.0, 0.0091]
['U1415040', 0.3332, 0.1254, 0.4597, 0.0, 0.0786, 0.0, 0.0031]
['U2012010', 0.5954, 0.1192, 0.2681, 0.0, 0.0114, 0.0058, 0.0002]
['U2012020', 0.5657, 0.1187, 0.2474, 0.0, 0.0238, 0.0124, 0.0319]
['U2015030', 0.3354, 0.042, 0.5853, 0.0, 0.0375, 0.0, 0.0]
['U2022010', 0.5385, 0.1392, 0.2549, 0.0, 0.0347, 0.0111, 0.0215]
['U2022020', 0.5352, 0.1405, 0.2521, 0.0, 0.04, 0.0109, 0.0213]
['U2035020', 0.3508, 0.4483, 0.0409, 0.0, 0.0405, 0.1038, 0.0157]
['U2035040', 0.6684, 0.2244, 0.0553, 0.0, 0.0276, 0.0243, 0.0]
['U2102010', 0.4576, 0.2753, 0.1724, 0.0016, 0.0378, 0.0379, 0.0174]
['U2112010', 0.4524, 0.2805, 0.1877, 0.001, 0.0379, 0.0218, 0.0118]
['U2215020', 0.3405, 0.426, 0.199, 0.0, 0.0272, 0.0072, 0.0]
['U2222010', 0.4051, 0.3061, 0.2055, 0.0005, 0.0339, 0.0127, 0.0068]
['U2225410', 0.465, 0.202, 0.2676, 0.0, 0.0654, 0.0, 0.0]
['U2324210', 0.416, 0.0905, 0.4196, 0.0, 0.0652, 0.0, 0.0087]
['U2330600', 0.5557, 0.0485, 0.3083, 0.0, 0.0876, 0.0, 0.0]
['U2345030', 0.6044, 0.0777, 0.1515, 0.007, 0.1038, 0.0, 0.0558]
['U2345040', 0.4987, 0.082, 0.2255, 0.0078, 0.1475, 0.0, 0.0386]
['U2345410', 0.6558, 0.1114, 0.1744, 0.0, 0.0568, 0.0, 0.0017]
['U2354010', 0.416, 0.0844, 0.3495, 0.0018, 0.0991, 0.0, 0.016]
['U2356610', 0.4801, 0.0468, 0.4696, 0.0, 0.0035, 0.0, 0.0]
['U2402010', 0.4095, 0.2252, 0.2559, 0.0011, 0.0619, 0.008, 0.0093]
['U2412020', 0.4118, 0.2196, 0.2626, 0.0015, 0.062, 0.0075, 0.0089]
['U2425020', 0.3915, 0.2338, 0.335, 0.0, 0.0396, 0.0, 0.0]
['U2425250', 0.3963, 0.2784, 0.3063, 0.0, 0.0191, 0.0, 0.0]
['U2502010', 0.4101, 0.222, 0.2716, 0.0013, 0.058, 0.0064, 0.0077]
['U2512010', 0.4145, 0.2181, 0.2715, 0.0013, 0.0585, 0.0062, 0.0076]
['U2540520', 0.3318, 0.1509, 0.4732, 0.0, 0.0442, 0.0, 0.0]
['U2542010', 0.4113, 0.2134, 0.2747, 0.0015, 0.0647, 0.0058, 0.0088]
['U2604030', 0.3605, 0.496, 0.1341, 0.0, 0.0094, 0.0, 0.0]
['U2624010', 0.4566, 0.3133, 0.2145, 0.0, 0.0154, 0.0, 0.0]
['U2634010', 0.4485, 0.321, 0.2141, 0.0, 0.0163, 0.0, 0.0]
['U2654010', 0.4469, 0.2826, 0.2479, 0.0, 0.0225, 0.0, 0.0]
['U2655010', 0.4608, 0.1614, 0.3485, 0.0, 0.0293, 0.0, 0.0]
['U2715010', 0.3496, 0.2076, 0.3792, 0.0118, 0.052, 0.0, 0.0]
['U2722010', 0.428, 0.2261, 0.2672, 0.0015, 0.0548, 0.0041, 0.0069]
['U3205210', 0.5188, 0.4202, 0.0609, 0.0, 0.0, 0.0, 0.0]
['U3214010', 0.3221, 0.5435, 0.1314, 0.0, 0.003, 0.0, 0.0]
['U3445020', 0.3381, 0.2551, 0.3594, 0.0, 0.0473, 0.0, 0.0]
['U3446410', 0.3802, 0.2923, 0.2811, 0.0, 0.0463, 0.0, 0.0]
['U4505010', 0.6052, 0.3383, 0.0386, 0.0, 0.018, 0.0, 0.0]
['U4515420', 0.3137, 0.6433, 0.041, 0.0, 0.002, 0.0, 0.0]
['U4624010', 0.4726, 0.3939, 0.1096, 0.0, 0.0239, 0.0, 0.0]
['U4625010', 0.4903, 0.3898, 0.1012, 0.0, 0.0188, 0.0, 0.0]
['U4636610', 0.3128, 0.4246, 0.2068, 0.0, 0.0557, 0.0, 0.0]
['U4644010', 0.3449, 0.4201, 0.1886, 0.0009, 0.0456, 0.0, 0.0]
['V0155010', 0.4314, 0.2644, 0.2603, 0.0101, 0.0338, 0.0, 0.0]
['V0205010', 0.4278, 0.2991, 0.0739, 0.1934, 0.0057, 0.0, 0.0]
['V0222010', 0.3639, 0.183, 0.1649, 0.1687, 0.0573, 0.0596, 0.0024]
['V0235010', 0.3283, 0.1989, 0.3661, 0.0019, 0.1049, 0.0, 0.0]
['V0235020', 0.3504, 0.2282, 0.3338, 0.0019, 0.0858, 0.0, 0.0]
['V0314020', 0.4996, 0.3486, 0.0592, 0.0682, 0.0244, 0.0, 0.0]
['V0325010', 0.5775, 0.2868, 0.0705, 0.0426, 0.0227, 0.0, 0.0]
['V0334010', 0.5586, 0.2761, 0.0917, 0.0495, 0.024, 0.0, 0.0]
['V0345210', 0.432, 0.2337, 0.2386, 0.0, 0.0958, 0.0, 0.0]
['V0415010', 0.4185, 0.3113, 0.1557, 0.0, 0.1146, 0.0, 0.0]
['V1015010', 0.6475, 0.3263, 0.0134, 0.0, 0.0127, 0.0, 0.0]
['V1015020', 0.6792, 0.2911, 0.0194, 0.0, 0.01, 0.0, 0.0]
['V1015030', 0.6841, 0.2884, 0.0185, 0.0, 0.009, 0.0, 0.0]
['V1214010', 0.5089, 0.2186, 0.1689, 0.0724, 0.0266, 0.0, 0.0044]
['V1225010', 0.417, 0.1366, 0.384, 0.0366, 0.0257, 0.0, 0.0]
['V1235210', 0.5084, 0.3455, 0.0569, 0.0893, 0.0, 0.0, 0.0]
['V1235420', 0.5522, 0.2112, 0.0837, 0.153, 0.0, 0.0, 0.0]
['V1235610', 0.6775, 0.1978, 0.0672, 0.0135, 0.0333, 0.0109, 0.0]
['V1237410', 0.6408, 0.1874, 0.1311, 0.0, 0.0407, 0.0, 0.0]
['V1255010', 0.5832, 0.3076, 0.0562, 0.0375, 0.0155, 0.0, 0.0]
['V1257810', 0.3779, 0.3598, 0.1916, 0.0, 0.0708, 0.0, 0.0]
['V1258410', 0.4352, 0.2127, 0.3161, 0.0, 0.036, 0.0, 0.0]
['V1315020', 0.5546, 0.1246, 0.1999, 0.0036, 0.114, 0.0036, 0.0]
['V1316440', 0.6532, 0.1395, 0.1728, 0.0113, 0.023, 0.0, 0.0]
['V1318210', 0.4119, 0.1156, 0.2975, 0.0019, 0.1731, 0.0, 0.0]
['V1325020', 0.3075, 0.1782, 0.4282, 0.0, 0.0862, 0.0, 0.0]
['V1425010', 0.5416, 0.1861, 0.2723, 0.0, 0.0, 0.0, 0.0]
['V1446210', 0.4185, 0.1839, 0.3976, 0.0, 0.0, 0.0, 0.0]
['V1464310', 0.5994, 0.1261, 0.205, 0.0, 0.0368, 0.0262, 0.0066]
['V1525410', 0.3834, 0.2369, 0.3159, 0.0, 0.0248, 0.0391, 0.0]
['V1534010', 0.5203, 0.2257, 0.2181, 0.0, 0.024, 0.0052, 0.0069]
['V1535210', 0.4065, 0.3591, 0.1989, 0.0, 0.0355, 0.0, 0.0]
['V2024010', 0.6725, 0.1805, 0.1224, 0.0, 0.0, 0.0208, 0.0039]
['V2114010', 0.5275, 0.2796, 0.1646, 0.0, 0.0284, 0.0, 0.0]
['V2414010', 0.6832, 0.2519, 0.0184, 0.0, 0.0354, 0.0082, 0.0029]
['V2414030', 0.6799, 0.2178, 0.0232, 0.0, 0.0671, 0.0, 0.0121]
['V2420560', 0.5616, 0.3531, 0.0794, 0.0, 0.0059, 0.0, 0.0]
['V2444010', 0.6655, 0.2556, 0.0405, 0.0, 0.0325, 0.0039, 0.0021]
['V2444020', 0.6735, 0.2508, 0.0378, 0.0, 0.0314, 0.0048, 0.0017]
['V2505020', 0.5999, 0.1537, 0.2141, 0.0, 0.0323, 0.0, 0.0]
['V2624010', 0.4548, 0.2869, 0.2438, 0.0, 0.0143, 0.0, 0.0001]
['V2712010', 0.5598, 0.2481, 0.1397, 0.0014, 0.0329, 0.0057, 0.0123]
['V2814020', 0.4456, 0.304, 0.2292, 0.0, 0.0212, 0.0, 0.0]
['V2814030', 0.4327, 0.314, 0.2338, 0.0, 0.0195, 0.0, 0.0]
['V2814040', 0.4331, 0.3173, 0.2449, 0.0, 0.0048, 0.0, 0.0]
['V2924010', 0.6247, 0.2581, 0.0839, 0.0048, 0.0238, 0.0048, 0.0]
['V2924020', 0.6049, 0.2874, 0.0717, 0.0072, 0.0216, 0.0072, 0.0]
['V2934010', 0.638, 0.2338, 0.0929, 0.0034, 0.0284, 0.0034, 0.0]
['V2942010', 0.5394, 0.2479, 0.1607, 0.0016, 0.0348, 0.0046, 0.0109]
['V3104010', 0.3802, 0.3401, 0.158, 0.0, 0.1217, 0.0, 0.0]
['V3114010', 0.3466, 0.35, 0.1962, 0.0, 0.1073, 0.0, 0.0]
['V3124010', 0.3263, 0.3476, 0.2272, 0.0, 0.0991, 0.0, 0.0]
['V3315010', 0.5892, 0.2035, 0.1499, 0.0, 0.0573, 0.0, 0.0]
['V3335010', 0.4407, 0.0421, 0.5172, 0.0, 0.0, 0.0, 0.0]
['V3515010', 0.509, 0.4513, 0.0396, 0.0, 0.0, 0.0, 0.0]
['V3515610', 0.5488, 0.4512, 0.0, 0.0, 0.0, 0.0, 0.0]
['V3517010', 0.6337, 0.3278, 0.0383, 0.0, 0.0, 0.0, 0.0]
['V3524010', 0.4861, 0.3046, 0.1654, 0.0, 0.0414, 0.0, 0.0026]
['V3614010', 0.3428, 0.1525, 0.4871, 0.0, 0.0177, 0.0, 0.0]
['V3724010', 0.5717, 0.2197, 0.1998, 0.0, 0.0088, 0.0, 0.0001]
['V4034010', 0.5318, 0.2249, 0.2285, 0.0, 0.015, 0.0, 0.0]
['V4144010', 0.5791, 0.3128, 0.0898, 0.0049, 0.0108, 0.0, 0.0025]
['V4145210', 0.5939, 0.3776, 0.0286, 0.0, 0.0, 0.0, 0.0]
['V4174010', 0.5689, 0.314, 0.1037, 0.0025, 0.0094, 0.0, 0.0013]
['V4225010', 0.6582, 0.2441, 0.0673, 0.0305, 0.0, 0.0, 0.0]
['V4264010', 0.6404, 0.185, 0.155, 0.0179, 0.0018, 0.0, 0.0]
['V4287010', 0.5201, 0.0, 0.4799, 0.0, 0.0, 0.0, 0.0]
['V4414010', 0.5704, 0.1849, 0.2394, 0.0052, 0.0, 0.0, 0.0]
['V5004010', 0.5147, 0.4401, 0.0364, 0.0, 0.0089, 0.0, 0.0]
['V5004030', 0.5511, 0.4242, 0.0246, 0.0, 0.0, 0.0, 0.0]
['V5014010', 0.4846, 0.4216, 0.0615, 0.0, 0.0323, 0.0, 0.0]
['V5026410', 0.4802, 0.3932, 0.1267, 0.0, 0.0, 0.0, 0.0]
['V5035010', 0.5733, 0.3366, 0.0815, 0.0, 0.0084, 0.0, 0.0]
['V5045020', 0.5584, 0.4034, 0.0382, 0.0, 0.0, 0.0, 0.0]
['V5045810', 0.5607, 0.4393, 0.0, 0.0, 0.0, 0.0, 0.0]
['V5046610', 0.5242, 0.4521, 0.0238, 0.0, 0.0, 0.0, 0.0]
['V5054010', 0.4768, 0.422, 0.0868, 0.0, 0.0143, 0.0, 0.0]
['V5064010', 0.4957, 0.4014, 0.0896, 0.0, 0.0133, 0.0, 0.0]
['V5214010', 0.4987, 0.2192, 0.2713, 0.0045, 0.0064, 0.0, 0.0]
['V5304010', 0.4464, 0.3428, 0.2109, 0.0, 0.0, 0.0, 0.0]
['V5324010', 0.5054, 0.3132, 0.1813, 0.0001, 0.0, 0.0, 0.0]
['V5445010', 0.6196, 0.2418, 0.0678, 0.0236, 0.0472, 0.0, 0.0]
['V5474010', 0.5607, 0.2574, 0.1647, 0.0017, 0.0155, 0.0, 0.0]
['V6035010', 0.6127, 0.3, 0.0722, 0.0151, 0.0, 0.0, 0.0]
['V6052010', 0.4846, 0.2991, 0.2054, 0.004, 0.0068, 0.0, 0.0]
['V6105610', 0.303, 0.5323, 0.1501, 0.0, 0.0145, 0.0, 0.0]
['V6125010', 0.6435, 0.2852, 0.069, 0.0024, 0.0, 0.0, 0.0]
['V7124010', 0.6733, 0.3016, 0.0247, 0.0, 0.0003, 0.0, 0.0]
['V7135020', 0.6204, 0.364, 0.0156, 0.0, 0.0, 0.0, 0.0]
['V7135030', 0.5774, 0.413, 0.0097, 0.0, 0.0, 0.0, 0.0]
['V7144010', 0.6992, 0.246, 0.0453, 0.0018, 0.0077, 0.0, 0.0]
['V7184010', 0.4968, 0.3418, 0.1169, 0.0052, 0.0392, 0.0, 0.0]
['W0414010', 0.443, 0.3928, 0.071, 0.0678, 0.0253, 0.0, 0.0]
['W0425010', 0.5724, 0.2837, 0.1038, 0.0269, 0.0131, 0.0, 0.0]
['W1110010', 0.3072, 0.3217, 0.1441, 0.1764, 0.0183, 0.0292, 0.0028]
['W1410010', 0.3287, 0.3008, 0.1535, 0.1573, 0.03, 0.0249, 0.0049]
['W2335210', 0.3093, 0.4156, 0.1172, 0.158, 0.0, 0.0, 0.0]
['W2832020', 0.3026, 0.2752, 0.2147, 0.1557, 0.0122, 0.0308, 0.009]
['W3005010', 0.4971, 0.3428, 0.1601, 0.0, 0.0, 0.0, 0.0]
['W3020010', 0.3243, 0.2883, 0.1754, 0.1535, 0.0251, 0.0266, 0.0067]
['W3200010', 0.3246, 0.2851, 0.1837, 0.147, 0.0276, 0.0248, 0.0071]
['W3315010', 0.6569, 0.2955, 0.0134, 0.0074, 0.0268, 0.0, 0.0]
['W3344010', 0.6634, 0.2246, 0.0808, 0.0202, 0.0111, 0.0, 0.0]
['W3345010', 0.6498, 0.3128, 0.0, 0.0373, 0.0, 0.0, 0.0]
['W3534020', 0.3342, 0.1823, 0.4679, 0.0, 0.0155, 0.0, 0.0]
['X1025020', 0.4248, 0.2681, 0.2114, 0.0954, 0.0003, 0.0, 0.0]
['X1034020', 0.4791, 0.238, 0.2165, 0.0636, 0.0028, 0.0, 0.0]
['X1044020', 0.4626, 0.2474, 0.244, 0.0419, 0.0038, 0.0, 0.0]
['X1225010', 0.4454, 0.3956, 0.1056, 0.0535, 0.0, 0.0, 0.0]
['X1424010', 0.4132, 0.3926, 0.1434, 0.0481, 0.0027, 0.0, 0.0]
['X2114010', 0.5276, 0.1505, 0.1831, 0.1387, 0.0, 0.0, 0.0]
['X2305010', 0.5017, 0.3542, 0.1441, 0.0, 0.0, 0.0, 0.0]
['X2405010', 0.6045, 0.1723, 0.2231, 0.0, 0.0, 0.0, 0.0]
['X2414010', 0.6078, 0.1603, 0.2319, 0.0, 0.0, 0.0, 0.0]
['X2414020', 0.6109, 0.1926, 0.1965, 0.0, 0.0, 0.0, 0.0]
['X2414030', 0.6026, 0.1798, 0.2177, 0.0, 0.0, 0.0, 0.0]
['X2424010', 0.5104, 0.2916, 0.1895, 0.0085, 0.0, 0.0, 0.0]
['X3484020', 0.4557, 0.1886, 0.3457, 0.0, 0.01, 0.0, 0.0]
['Y0115410', 0.6802, 0.232, 0.0878, 0.0, 0.0, 0.0, 0.0]
['Y0204010', 0.4194, 0.5262, 0.0529, 0.0016, 0.0, 0.0, 0.0]
['Y0224030', 0.5506, 0.3334, 0.0891, 0.0195, 0.0073, 0.0, 0.0]
['Y0244040', 0.6592, 0.2718, 0.046, 0.0127, 0.0103, 0.0, 0.0]
['Y0254040', 0.6899, 0.2428, 0.0464, 0.0101, 0.0109, 0.0, 0.0]
['Y0284060', 0.6043, 0.2776, 0.0743, 0.0121, 0.0319, 0.0, 0.0]
['Y0325010', 0.5063, 0.4221, 0.0701, 0.0, 0.0016, 0.0, 0.0]
['Y0404010', 0.3905, 0.2464, 0.0989, 0.1929, 0.0, 0.0247, 0.0465]
['Y0424010', 0.4673, 0.3712, 0.0613, 0.0837, 0.0097, 0.0024, 0.0045]
['Y0434010', 0.4851, 0.3748, 0.057, 0.0693, 0.0082, 0.002, 0.0037]
['Y0436420', 0.489, 0.2793, 0.0728, 0.142, 0.0169, 0.0, 0.0]
['Y0444010', 0.4587, 0.41, 0.0651, 0.0539, 0.0086, 0.0012, 0.0023]
['Y0446010', 0.4519, 0.4877, 0.0605, 0.0, 0.0, 0.0, 0.0]
['Y0455020', 0.5555, 0.2572, 0.1527, 0.0347, 0.0, 0.0, 0.0]
['Y0464030', 0.4526, 0.4141, 0.0727, 0.0473, 0.0083, 0.001, 0.004]
['Y0466010', 0.659, 0.3154, 0.0256, 0.0, 0.0, 0.0, 0.0]
['Y0474030', 0.3913, 0.468, 0.083, 0.0361, 0.0179, 0.0008, 0.003]
['Y0615020', 0.6729, 0.2898, 0.0373, 0.0, 0.0, 0.0, 0.0]
['Y0624020', 0.6447, 0.3104, 0.0449, 0.0, 0.0, 0.0, 0.0]
['Y0625220', 0.4104, 0.4247, 0.1579, 0.0, 0.007, 0.0, 0.0]
['Y0626410', 0.5447, 0.1974, 0.2577, 0.0, 0.0, 0.0, 0.0]
['Y0634030', 0.5289, 0.37, 0.0808, 0.0113, 0.0023, 0.0, 0.0068]
['Y0655010', 0.3594, 0.5901, 0.0346, 0.0098, 0.0059, 0.0, 0.0]
['Y0664040', 0.3952, 0.5182, 0.0623, 0.0154, 0.0055, 0.0, 0.0033]
['Y0674020', 0.3471, 0.5615, 0.0621, 0.0172, 0.0094, 0.0, 0.0029]
['Y1105010', 0.5926, 0.3028, 0.1046, 0.0, 0.0, 0.0, 0.0]
['Y1112010', 0.6341, 0.2679, 0.0726, 0.0178, 0.0047, 0.0, 0.0031]
['Y1135010', 0.6205, 0.2518, 0.1278, 0.0, 0.0, 0.0, 0.0]
['Y1225020', 0.5967, 0.309, 0.0886, 0.0, 0.0057, 0.0, 0.0]
['Y1232010', 0.4851, 0.34, 0.1524, 0.0055, 0.0158, 0.0, 0.0011]
['Y1345010', 0.5112, 0.2254, 0.2634, 0.0, 0.0, 0.0, 0.0]
['Y1355210', 0.6372, 0.0951, 0.2514, 0.0008, 0.0078, 0.0, 0.0078]
['Y1415020', 0.4912, 0.412, 0.073, 0.0123, 0.0118, 0.0, 0.0]
['Y1416210', 0.4521, 0.4804, 0.0462, 0.0, 0.0213, 0.0, 0.0]
['Y1422010', 0.3701, 0.3404, 0.2646, 0.0051, 0.0187, 0.0, 0.0009]
['Y1422020', 0.3838, 0.3271, 0.2643, 0.0054, 0.0184, 0.0, 0.0009]
['Y1435410', 0.5533, 0.3602, 0.0471, 0.0, 0.0393, 0.0, 0.0]
['Y1524010', 0.6584, 0.283, 0.0586, 0.0, 0.0, 0.0, 0.0]
['Y1564010', 0.3629, 0.5769, 0.0561, 0.0, 0.0041, 0.0, 0.0]
['Y1605050', 0.4729, 0.448, 0.0791, 0.0, 0.0, 0.0, 0.0]
['Y1612020', 0.3478, 0.4254, 0.2047, 0.0039, 0.0173, 0.0, 0.0008]
['Y2015010', 0.6492, 0.2734, 0.0646, 0.0, 0.0129, 0.0, 0.0]
['Y2102010', 0.4309, 0.4965, 0.0645, 0.0012, 0.0069, 0.0, 0.0]
['Y2132010', 0.3705, 0.5443, 0.0768, 0.0018, 0.0066, 0.0, 0.0]
['Y2142010', 0.3378, 0.5781, 0.0719, 0.0037, 0.0083, 0.0, 0.0]
['Y2214010', 0.3653, 0.4826, 0.139, 0.0044, 0.0088, 0.0, 0.0]
['Y2312010', 0.3257, 0.5597, 0.0918, 0.0056, 0.0121, 0.0, 0.0051]
['Y2332010', 0.3028, 0.5816, 0.0901, 0.0071, 0.0141, 0.0, 0.0045]
['Y2504020', 0.5148, 0.3104, 0.1698, 0.0, 0.0, 0.0, 0.0051]
['Y2514020', 0.5336, 0.2818, 0.1669, 0.0047, 0.0104, 0.0, 0.0026]
['Y2554010', 0.6444, 0.218, 0.1153, 0.0087, 0.0123, 0.0, 0.0011]
['Y2584010', 0.5552, 0.3256, 0.0961, 0.0082, 0.0143, 0.0, 0.0008]
['Y3414010', 0.4119, 0.4946, 0.0834, 0.0, 0.0101, 0.0, 0.0]
['Y3444010', 0.3327, 0.5307, 0.1215, 0.0, 0.0151, 0.0, 0.0]
['Y4002010', 0.5994, 0.3354, 0.0201, 0.0, 0.0451, 0.0, 0.0]
['Y4022010', 0.35, 0.3344, 0.2356, 0.0242, 0.0559, 0.0, 0.0]
['Y4105210', 0.4803, 0.4826, 0.0, 0.0371, 0.0, 0.0, 0.0]
['Y4115020', 0.408, 0.0308, 0.316, 0.0194, 0.2258, 0.0, 0.0]
['Y4122010', 0.3425, 0.225, 0.2899, 0.0184, 0.1224, 0.0, 0.0017]
['Y4122020', 0.3135, 0.2534, 0.2842, 0.0235, 0.1236, 0.0, 0.0015]
['Y4122040', 0.3294, 0.2468, 0.2827, 0.0216, 0.118, 0.0, 0.0016]
['Y4414030', 0.4151, 0.335, 0.1314, 0.0231, 0.0953, 0.0, 0.0]
['Y4604020', 0.6719, 0.2079, 0.0938, 0.0117, 0.0146, 0.0, 0.0]
['Y4615010', 0.5698, 0.3324, 0.0219, 0.0, 0.0759, 0.0, 0.0]
['Y4615020', 0.3486, 0.6057, 0.0049, 0.0, 0.0407, 0.0, 0.0]
['Y4616010', 0.3144, 0.6856, 0.0, 0.0, 0.0, 0.0, 0.0]
['Y4616220', 0.4087, 0.5913, 0.0, 0.0, 0.0, 0.0, 0.0]
['Y4617610', 0.423, 0.577, 0.0, 0.0, 0.0, 0.0, 0.0]
['Y4617620', 0.3921, 0.6079, 0.0, 0.0, 0.0, 0.0, 0.0]
['Y4624010', 0.4465, 0.4633, 0.0473, 0.004, 0.0386, 0.0, 0.0]
['Y5002010', 0.4733, 0.3072, 0.106, 0.0, 0.1135, 0.0, 0.0]
['Y5005210', 0.5554, 0.2713, 0.1252, 0.0, 0.048, 0.0, 0.0]
['Y5032010', 0.5861, 0.2254, 0.1488, 0.0, 0.0397, 0.0, 0.0]
['Y5032020', 0.5865, 0.2572, 0.1238, 0.001, 0.0315, 0.0, 0.0]
['Y5105010', 0.6197, 0.1549, 0.164, 0.0118, 0.0497, 0.0, 0.0]
['Y5106610', 0.5526, 0.3028, 0.0733, 0.0, 0.0714, 0.0, 0.0]
['Y5112010', 0.5817, 0.2505, 0.1175, 0.0066, 0.042, 0.0, 0.0017]
['Y5115020', 0.6353, 0.1893, 0.1652, 0.0, 0.0104, 0.0, 0.0]
['Y5202010', 0.5762, 0.2543, 0.1241, 0.0084, 0.0357, 0.0, 0.0012]
['Y5215010', 0.4911, 0.4495, 0.0465, 0.0, 0.0129, 0.0, 0.0]
['Y5215020', 0.4095, 0.4901, 0.0675, 0.0002, 0.0328, 0.0, 0.0]
['Y5235010', 0.6017, 0.1824, 0.135, 0.0152, 0.0657, 0.0, 0.0]
['Y5312010', 0.5611, 0.2768, 0.1151, 0.009, 0.0374, 0.0, 0.0008]
['Y5325010', 0.3055, 0.5645, 0.0816, 0.0137, 0.0348, 0.0, 0.0]
['Y5424010', 0.4143, 0.5392, 0.0294, 0.0, 0.017, 0.0, 0.0]
['Y5435010', 0.6977, 0.3022, 0.0, 0.0, 0.0, 0.0, 0.0]
['Y5436210', 0.5473, 0.4258, 0.0, 0.0, 0.0, 0.0, 0.0269]
['Y5445010', 0.5498, 0.3015, 0.1376, 0.0, 0.0111, 0.0, 0.0]
['Y5534010', 0.5882, 0.2256, 0.1207, 0.0094, 0.0511, 0.0, 0.005]
['Y5534030', 0.5314, 0.2352, 0.1245, 0.0076, 0.097, 0.0, 0.0041]
['Y5534040', 0.5315, 0.2294, 0.1268, 0.0094, 0.099, 0.0, 0.004]
['Y5605210', 0.4712, 0.1076, 0.1513, 0.0, 0.2699, 0.0, 0.0]
['Y5615010', 0.36, 0.4064, 0.2111, 0.011, 0.0115, 0.0, 0.0]
['Y5615020', 0.3939, 0.3649, 0.2379, 0.0032, 0.0, 0.0, 0.0]
['Y5615030', 0.4045, 0.349, 0.1725, 0.0079, 0.0663, 0.0, 0.0]
['Y5615040', 0.4938, 0.3784, 0.1278, 0.0, 0.0, 0.0, 0.0]
['Y6012010', 0.3135, 0.3122, 0.1786, 0.1958, 0.0, 0.0, 0.0]
['Y6035610', 0.6376, 0.2284, 0.1106, 0.0236, 0.0, 0.0, 0.0]
['Y6042010', 0.4198, 0.3147, 0.1635, 0.1022, 0.0, 0.0, 0.0]
['Y6334050', 0.5547, 0.3104, 0.0448, 0.0826, 0.0077, 0.0, 0.0]
['Y6442010', 0.4944, 0.312, 0.1034, 0.0788, 0.01, 0.0, 0.0015]
['Y6442020', 0.4984, 0.3164, 0.1001, 0.0796, 0.0044, 0.0, 0.0011]
['Y6614010', 0.4757, 0.4462, 0.0613, 0.0142, 0.0026, 0.0, 0.0]
['Y6624010', 0.502, 0.4251, 0.0446, 0.0238, 0.0044, 0.0, 0.0]
['Y6635010', 0.6084, 0.3341, 0.0575, 0.0, 0.0, 0.0, 0.0]
['Y7002020', 0.3533, 0.3741, 0.1148, 0.1578, 0.0, 0.0, 0.0]
['Y7315010', 0.413, 0.4502, 0.0622, 0.0745, 0.0, 0.0, 0.0]
['Y7415220', 0.3892, 0.3619, 0.1921, 0.0, 0.0568, 0.0, 0.0]
['Y7915010', 0.4519, 0.2474, 0.197, 0.1037, 0.0, 0.0, 0.0]
['Y8124010', 0.5387, 0.2976, 0.1017, 0.0618, 0.0, 0.0, 0.0]
['Y8324020', 0.3917, 0.4332, 0.1262, 0.038, 0.0109, 0.0, 0.0]
['Y8814010', 0.5408, 0.2945, 0.0988, 0.0659, 0.0, 0.0, 0.0]
['Y9025010', 0.3595, 0.2368, 0.1828, 0.2207, 0.0, 0.0, 0.0]
['Y9215030', 0.6697, 0.3026, 0.0277, 0.0, 0.0, 0.0, 0.0]
['Y9414020', 0.5348, 0.2261, 0.058, 0.1812, 0.0, 0.0, 0.0]
['Y9806210', 0.3951, 0.4798, 0.0883, 0.0361, 0.0, 0.0, 0.0006]

In [167]:
import datetime
# voiture couleur (str) & carburant (int) & rouler() => print(vroom) - carburant
class Personne:
    
    def __init__(self, age, nom):
        self.age = age
        self.nom = nom
    
    def est_majeur(self):
        return self.age >= 18

    @property
    def annee_de_naissance(self):
        annee = datetime.datetime.now().year
        return annee - self.age

    @annee_de_naissance.setter
    def annee_de_naissance(self, annee):
        auj = datetime.datetime.now().year
        self.age = auj - annee
    
    @classmethod
    def moyenne(cls, personnes):
        return sum(p.age for p in personnes) / len(personnes)
    
    def __lt__(self, other):
        return self.age < other.age

    def __gt__(self, other):
        return self.age > other.age 
    
    def __repr__(self):
        return self.nom
    
    def __len__(self):
        return self.age
    
    def __str__(self):
        return self.nom
    
    def __iter__(self):
        yield 1
        yield 2
    
    #@staticmethod
    #def moyenne(personnes):
    #    return sum(p.age for p in personnes) / len(personnes)


pers = Personne(17, "Carole")
pers2 = Personne(86, "Yann")

print(Personne.moyenne([pers, pers2]))

print(pers.age)
pers.age = 18
# print(Personne.est_majeur(pers))
print(pers.est_majeur())

print(pers.annee_de_naissance)

pers.annee_de_naissance = 1985


print(pers.age)

type(un_objet)

if pers < pers2:
    print(pers.nom, "est plus jeune que", pers2.nom)
    
sorted([pers, pers2])

print(len(pers))

print(pers)

for i in pers:
    print(i)


51.5
17
True
1997
30
Carole est plus jeune que Yann
30
Carole
1
2

In [176]:
class Employe(Personne):
        
    def __init__(self, age, nom, numero):
        super().__init__(age, nom)
        self.numero = numero
        
e = Employe('18', "Suzane", 787979)
print(e)


Suzane

In [196]:
import matplotlib
import numpy as np
import matplotlib.pyplot as plt



%matplotlib inline  


x = np.linspace(0, 3*np.pi, 500)

plt.plot(x, np.sin(x**2))


plt.title('A simple chirp')
plt.show()



In [216]:
import numpy as np

a = np.array([1, 2, 3])

print(type(a))

d = np.arange(0, 100)

e = np.array([
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
])

e = np.sin(e + 3 / 6)
e.transpose()


<class 'numpy.ndarray'>
Out[216]:
array([[ 0.99749499, -0.97753012,  0.93799998],
       [ 0.59847214, -0.70554033,  0.79848711],
       [-0.35078323,  0.21511999, -0.07515112]])

In [218]:
import pandas as pd


cannot import name 'hashtable'
---------------------------------------------------------------------------
ImportError                               Traceback (most recent call last)
<ipython-input-218-af55e7023913> in <module>()
----> 1 import pandas as pd

/usr/lib/python3/dist-packages/pandas/__init__.py in <module>()
      5 
      6 try:
----> 7     from . import hashtable, tslib, lib
      8 except Exception:  # pragma: no cover
      9     import sys

ImportError: cannot import name 'hashtable'