In [2]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import scipy.optimize as opt
For this problem you are given a raw dataset in the file decay_osc.npz. This file contains three arrays:
tdata: an array of time valuesydata: an array of y valuesdy: the absolute uncertainties (standard deviations) in yYour job is to fit the following model to this data:
$$ y(t) = A e^{-\lambda t} \cos{\omega t + \delta} $$First, import the data using NumPy and make an appropriately styled error bar plot of the raw data.
In [3]:
f = np.load('decay_osc.npz')
tdata = np.array(f['tdata'])
ydata = np.array(f['ydata'])
dy = np.array(f['dy'])
In [20]:
plt.figure(figsize=(8,6))
plt.errorbar(tdata, ydata, dy, fmt='.k', ecolor='lightgray')
plt.tick_params(axis='x', direction='out', top='off')
plt.tick_params(axis='y', direction='out', right='off')
plt.xlabel('t'), plt.ylabel('y'), plt.title('Oscillation Raw Data');
In [15]:
assert True # leave this to grade the data import and raw data plot
Now, using curve_fit to fit this model and determine the estimates and uncertainties for the parameters:
curve_fit to get a good fit.absolute_sigma=True.
In [16]:
def model(t, A, lam, omega, delta):
return A*np.exp(-lam*t)*np.cos(omega*t) + delta
In [17]:
theta_best, theta_cov = opt.curve_fit(model, tdata, ydata, sigma=dy, absolute_sigma=True)
In [18]:
print('A = {0:.3f} +/- {1:.3f}'.format(theta_best[0], np.sqrt(theta_cov[0,0])))
print('λ = {0:.3f} +/- {1:.3f}'.format(theta_best[1], np.sqrt(theta_cov[1,1])))
print('ω = {0:.3f} +/- {1:.3f}'.format(theta_best[2], np.sqrt(theta_cov[2,2])))
print('δ = {0:.3f} +/- {1:.3f}'.format(theta_best[3], np.sqrt(theta_cov[3,3])))
In [21]:
tfit = np.linspace(0,20)
yfit = model(tfit, theta_best[0], theta_best[1], theta_best[2], theta_best[3])
plt.figure(figsize=(8,6))
plt.plot(tfit, yfit)
plt.plot(tdata, ydata, 'k.')
plt.tick_params(axis='x', direction='out', top='off')
plt.tick_params(axis='y', direction='out', right='off')
plt.xlabel('t'), plt.ylabel('y'), plt.title('Oscillation Curve Fitting');
In [10]:
assert True # leave this cell for grading the fit; should include a plot and printout of the parameters+errors