In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
sns.set_style('white')
In [2]:
from scipy.interpolate import griddata
In this example the values of a scalar field $f(x,y)$ are known at a very limited set of points in a square domain:
Create arrays x, y, f:
x should be a 1d array of the x coordinates on the boundary and the 1 interior point.y should be a 1d array of the y coordinates on the boundary and the 1 interior point.f should be a 1d array of the values of f at the corresponding x and y coordinates.You might find that np.hstack is helpful.
In [10]:
# Collaborated with James A. on this part
x=np.empty(1,)
x[0]=0
x=np.hstack((x,[-5]*11))
for i in range(-4,5):
x=np.hstack((x,np.array((i,i))))
x=np.hstack((x,np.array(([5]*11))))
y=np.empty(1,)
for i in range(-5,6):
y=np.hstack((y,np.array((i))))
y=np.hstack((y,np.array((5,-5)*9)))
for i in range(-5,6):
y=np.hstack((y,np.array((i))))
f=np.zeros_like(x)
f[0]=1.0
The following plot should show the points on the boundary and the single point in the interior:
In [11]:
plt.scatter(x, y);
In [12]:
assert x.shape==(41,)
assert y.shape==(41,)
assert f.shape==(41,)
assert np.count_nonzero(f)==1
Use meshgrid and griddata to interpolate the function $f(x,y)$ on the entire square domain:
xnew and ynew should be 1d arrays with 100 points between $[-5,5]$.Xnew and Ynew should be 2d versions of xnew and ynew created by meshgrid.Fnew should be a 2d array with the interpolated values of $f(x,y)$ at the points (Xnew,Ynew).
In [13]:
xnew=np.linspace(-5,5,100)
ynew=np.linspace(-5,5,100)
Xnew,Ynew=np.meshgrid(xnew,ynew)
Fnew=griddata((x,y),f,(Xnew,Ynew),method='cubic')
In [14]:
assert xnew.shape==(100,)
assert ynew.shape==(100,)
assert Xnew.shape==(100,100)
assert Ynew.shape==(100,100)
assert Fnew.shape==(100,100)
Plot the values of the interpolated scalar field using a contour plot. Customize your plot to make it effective and beautiful.
In [18]:
plt.pcolormesh(Fnew,cmap='gist_earth')
plt.colorbar()
plt.title('2D Data Interpolation')
plt.xlabel('X-Data')
plt.ylabel('Y-Data');
In [ ]:
assert True # leave this to grade the plot