In [ ]:
In [ ]:
import pandas as pd
comments = pd.read_csv('jung/jung.csv')
# comments['date'] = comments['date'].apply(lambda d: datetime.datetime.strptime(d, '%Y-%m-%d').date())
comments['date'] = pd.to_datetime(comments['date'])
score_comments = comments[['date', 'score']].sort(['date'])
# print(score_comments)
score_comments = score_comments.set_index('date')
gs = score_comments.groupby(lambda x:x.week)
# print(gs.head())
summary_comment =
pd.concat([gs.std(), gs.mean(), gs.count()],axis=1, keys=['std', 'mean', 'count'])
# gs.mean().plot()
# gs.std().plot()
In [2]:
import pandas as pd
search_result = pd.read_csv('jung/jung_search.csv')
# print(df.head())
search_result['date'] = pd.to_datetime(search_result['date'])
search_result = search_result.set_index('date')
search_result = search_result.groupby(lambda x:x.week)
search_result = search_result.count()
print(type(search_result))
# dramaid = 63553
# ratings = df[df['dramaid']==dramaid].sort(['date'])[['date','ratings']]
# ratings = ratings.set_index('date')
# ratings = ratings.groupby(lambda x:x.week)
# ratings = ratings.aggregate(np.sum)
# # ratings.join(summary_comment, how='outer')
# ratings = ratings.join(summary_comment)
# print(ratings.corr())
# ratings.plot()
In [30]:
import pandas as pd
df = pd.read_csv('jung/ratings.csv')
# print(df.head())
df['date'] = pd.to_datetime(df['date'])
dramaid = 63553
ratings = df[df['dramaid']==dramaid].sort(['date'])[['date','ratings']]
ratings = ratings.set_index('date')
ratings = ratings.groupby(lambda x:x.week)
ratings = ratings.aggregate(np.sum)
# ratings.join(summary_comment, how='outer')
ratings = ratings.join(summary_comment)
# ratings = ratings.join(search_result)
# print(ratings)
ratings2 = ratings.copy()
ratings['Y'] = ratings['ratings'].shift(-1) - ratings['ratings']
print(ratings)
# print(ratings2.corr())
# print(ratings.corr())
# ratings2['ratings']
# ratings.plot()
In [17]:
In [ ]: