In [1]:
import numpy as np
import pandas as pd
from sklearn.cross_validation import cross_val_score
from sklearn.cross_validation import KFold
from sklearn import linear_model
from sklearn import grid_search
import gc
In [3]:
%ls
In [2]:
predictors_10_target = ['agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
'producto_for_log_de', 'agen_ruta_for_log_de',
'agen_cliente_for_log_de', 'agen_producto_for_log_de',
'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
'cliente_producto_for_log_de', 'cliente_for_log_sum', 'corr',
't_min_1', 't_min_2', 't_min_3', 't_min_4', 't_min_5', 't1_min_t2',
't1_min_t3', 't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4',
't2_min_t5', 't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod',
'LR_prod_corr', 't_m_5_cum', 't_m_4_cum', 't_m_3_cum',
't_m_2_cum', 't_m_1_cum', 'NombreCliente', 'weight',
'weight_per_piece', 'pieces','target']
In [3]:
predictors_10 = ['agen_for_log_de', 'ruta_for_log_de', 'cliente_for_log_de',
'producto_for_log_de', 'agen_ruta_for_log_de',
'agen_cliente_for_log_de', 'agen_producto_for_log_de',
'ruta_cliente_for_log_de', 'ruta_producto_for_log_de',
'cliente_producto_for_log_de', 'cliente_for_log_sum', 'corr',
't_min_1', 't_min_2', 't_min_3', 't_min_4', 't_min_5', 't1_min_t2',
't1_min_t3', 't1_min_t4', 't1_min_t5', 't2_min_t3', 't2_min_t4',
't2_min_t5', 't3_min_t4', 't3_min_t5', 't4_min_t5', 'LR_prod',
'LR_prod_corr', 't_m_5_cum', 't_m_4_cum', 't_m_3_cum',
't_m_2_cum', 't_m_1_cum', 'NombreCliente', 'weight',
'weight_per_piece', 'pieces']
In [4]:
train_dataset_10_normalize = pd.read_csv('train_dataset_10_normalize.csv',index_col = 0)
In [5]:
train_nn_time1 = train_dataset_10_normalize[predictors_10]
label_nn_time1 = train_dataset_10_normalize['target']
In [6]:
clf = linear_model.SGDRegressor(loss ='squared_loss',
penalty = 'l2',
alpha = 0.00001,
n_iter = 50)
In [7]:
train_nn_time1.fillna(-1,inplace = True)
In [8]:
kfold = KFold(n=len(train_nn_time1), n_folds=5, random_state=42)
results = cross_val_score(clf,train_nn_time1, label_nn_time1,scoring='mean_squared_error' ,cv=kfold,verbose = 3)
In [ ]: