In [7]:
%matplotlib inline

In [8]:
import pandas as pd
import numpy as np
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Input
from keras.models import Model
from keras.wrappers.scikit_learn import KerasRegressor, KerasClassifier
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold

In [6]:
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from utils import get_engine
from sklearn import linear_model
import matplotlib.pyplot as plt

if __name__ == '__main__':

    # load dataset
    table = "data_fraud_little"
    engine = get_engine()
    dataframe = pd.read_sql_query("select * from {table} limit 500".format(table=table),engine)
    dataset = dataframe.values
    print("First one row of the dataset")
    print("Shape [{}]".format(dataset.shape))
    print(dataset[0:2,:])
    # split into input (X) and output (Y) variables
    data_dimensions = 45
    #first dimension is the index, must be removed!!!!
    X = dataset[:, 1:data_dimensions]
    Y = dataset[:, data_dimensions]

    print("Fraud {}% ".format(float(np.sum(Y==1))*100.0/Y.shape[0]))
    print("Total #samples:",Y.shape[0])
    Y = to_categorical(Y, nb_classes=None)


    input_dimensions = X.shape[1]
    print("shapes: X[{}]=====Y[{}]".format(X.shape, Y.shape))






    # define base mode
    def baseline_model():
        return logistic_regresion()
        # return linear_regression()


    def keras_lin_reg():
        x = Input((None,input_dimensions))
        y = Dense(1,activation='linear')(x)
        model = Model(x,y,"Linear Regression")
        model.compile(loss='mse', optimizer='sgd')
        return model

    def logistic_regresion():
        logistic = linear_model.LogisticRegression(solver='sag', n_jobs=-1,max_iter=500)
        return logistic
    def linear_regression():
        lr = linear_model.LinearRegression(n_jobs=-1)
        return lr

    def mlp_model(hidden=None,layers=1):
        # create model
        model = Sequential()
        model.add(Dense(input_dimensions, input_dim=input_dimensions, init='normal', activation='relu'))
        if hidden is not None:
            for l in range(layers):
                model.add(Dense(hidden))
        model.add(Dense(2, init='normal', activation='softmax'))
        # Compile model
        model.compile(loss='binary_crossentropy', optimizer='adam')
        return model

    def mlp_model_wrap(layers=1):
        return mlp_model(100,layers)
    # fix random seed for reproducibility
    seed = 7
    np.random.seed(seed)
    # evaluate model with standardized dataset
    estimators = []
    estimators.append(('standardize', StandardScaler()))
    # estimators.append(('mlp', KerasClassifier(build_fn=mlp_model, nb_epoch=100, batch_size=10000, verbose=1)))
    estimators.append(('mlp', KerasClassifier(build_fn=mlp_model_wrap, nb_epoch=100, batch_size=10000, verbose=0)))
    # estimators.append(('liner reg', KerasClassifier(build_fn=keras_lin_reg, nb_epoch=100, batch_size=100000, verbose=1)))
    # estimators.append(('linear_reg', baseline_model()))
    pipeline = Pipeline(estimators)
    pipeline.set_params(mlp__layers=2)
    kfold = KFold(n_splits=2, random_state=seed)
    results = cross_val_score(pipeline, X, Y, cv=kfold, scoring='roc_auc',n_jobs=1)
    print("Results:", results)
    print("Results: %.24f (%.24f) ROC" % (results.mean(), results.std()))
    print(pipeline)
    plt.errorbar([0], [results.mean()], np.array(results.std()))

    plt.title(
        'Cross Validation')
    plt.xlabel('Model')
    plt.ylabel('AUC')

    plt.axis('tight')
    plt.show()


First one row of the dataset
Shape [(500, 47)]
[[  4.75200320e+07   7.49524000e+05   1.38868315e+18   6.89620000e+04
    5.83500000e+01   1.77484800e+06   5.77500000e+04   1.87362000e+05
    3.67000000e+02   1.62381800e+06   1.68885100e+06   5.20000000e+02
    5.00000000e+00   0.00000000e+00   0.00000000e+00   8.00000000e+00
    1.00000000e+00   0.00000000e+00   4.00000000e+00   0.00000000e+00
    1.00000000e+00   1.00000000e+02   0.00000000e+00   0.00000000e+00
    0.00000000e+00   5.60000000e+01   1.00000000e+00   1.00000000e+00
    0.00000000e+00   1.00000000e+00   3.00000000e+00   0.00000000e+00
    1.90000000e+01   1.84000000e+03   8.26000000e+02   6.10000000e+07
    5.83500000e+01   5.13265000e+03   7.50000000e+03   7.50000000e+03
    2.18985000e+03  -9.22337204e+18   1.38602880e+18   1.47048000e+03
    1.37419200e+18   0.00000000e+00  -9.22337204e+18]
 [  3.88424760e+07   6.72120000e+05   1.39431354e+18   1.00165000e+05
    1.49900000e+01   4.20536000e+05   1.32586000e+05   0.00000000e+00
    3.67000000e+02   6.71779000e+05   1.49575000e+06   6.12000000e+02
    1.00000000e+00   8.00000000e+00   0.00000000e+00   9.00000000e+00
    2.00000000e+00   4.80000000e+01   1.00000000e+00   4.00000000e+00
    2.00000000e+00   1.00000000e+02   0.00000000e+00   5.00000000e+00
    1.42000000e+02   9.80000000e+01   1.00000000e+00   1.00000000e+00
    0.00000000e+00   3.00000000e+00   3.00000000e+00   0.00000000e+00
    1.90000000e+01   8.28300000e+03   8.26000000e+02   6.10000000e+07
    0.00000000e+00  -3.40400000e+01   1.00000000e+02   1.00000000e+02
    1.34040000e+02   1.34904960e+18   1.39173120e+18   5.72400000e+01
    1.38101760e+18   0.00000000e+00  -9.22337204e+18]]
Fraud 15.4% 
('Total #samples:', 500)
shapes: X[(500, 44)]=====Y[(500, 2)]
('Results:', array([ 0.81347979,  0.90068653]))
Results: 0.857083160019660894590743 (0.043603374541113071316545) ROC
Pipeline(steps=[('standardize', StandardScaler(copy=True, with_mean=True, with_std=True)), ('mlp', <keras.wrappers.scikit_learn.KerasClassifier object at 0x7f205195ce50>)])

In [10]:
pipeline.fit(X,Y)
pipeline.predict_proba(X)


Out[10]:
array([[  1.00000000e+00,   2.34180564e-10],
       [  9.91887629e-01,   8.11230578e-03],
       [  3.39784436e-02,   9.66021597e-01],
       [  9.93469596e-01,   6.53044274e-03],
       [  2.36431565e-02,   9.76356864e-01],
       [  1.00000000e+00,   3.87060306e-12],
       [  1.00000000e+00,   1.53236132e-10],
       [  1.00000000e+00,   2.31401631e-09],
       [  9.99999285e-01,   6.85733085e-07],
       [  9.99383569e-01,   6.16431120e-04],
       [  1.00000000e+00,   4.76656359e-09],
       [  7.88428187e-01,   2.11571753e-01],
       [  1.00000000e+00,   1.16372743e-12],
       [  1.00000000e+00,   3.79162035e-09],
       [  1.00000000e+00,   9.22906640e-09],
       [  5.39086908e-02,   9.46091354e-01],
       [  1.00000000e+00,   2.20846865e-11],
       [  9.99942660e-01,   5.73005382e-05],
       [  8.28953460e-04,   9.99171019e-01],
       [  1.00000000e+00,   3.23459287e-10],
       [  9.84769940e-01,   1.52300727e-02],
       [  9.95903194e-01,   4.09686007e-03],
       [  2.41316020e-01,   7.58683980e-01],
       [  1.00000000e+00,   1.23799374e-10],
       [  9.99999046e-01,   9.48769241e-07],
       [  9.98486400e-01,   1.51351886e-03],
       [  3.29264365e-02,   9.67073560e-01],
       [  1.00000000e+00,   2.77303770e-11],
       [  1.00000000e+00,   9.47222745e-10],
       [  1.00000000e+00,   2.31689556e-09],
       [  1.04176201e-01,   8.95823836e-01],
       [  1.00000000e+00,   1.52887477e-11],
       [  9.99998093e-01,   1.91769664e-06],
       [  1.00000000e+00,   1.71420229e-08],
       [  1.00000000e+00,   6.95677731e-15],
       [  1.00000000e+00,   1.45227580e-13],
       [  9.90409136e-01,   9.59082227e-03],
       [  9.99999642e-01,   3.36186446e-07],
       [  1.00000000e+00,   4.86535923e-10],
       [  9.99994040e-01,   5.98493898e-06],
       [  9.80577946e-01,   1.94220077e-02],
       [  9.99812186e-01,   1.87792379e-04],
       [  9.99997854e-01,   2.19989715e-06],
       [  9.81814027e-01,   1.81859843e-02],
       [  1.00000000e+00,   7.63322077e-13],
       [  9.99983788e-01,   1.62487377e-05],
       [  9.23395064e-03,   9.90766048e-01],
       [  1.00000000e+00,   1.66607460e-17],
       [  1.07582845e-02,   9.89241779e-01],
       [  9.69576478e-01,   3.04235090e-02],
       [  1.00000000e+00,   2.19642704e-13],
       [  6.36708736e-03,   9.93632913e-01],
       [  1.00000000e+00,   6.46676224e-09],
       [  9.99999881e-01,   7.01714384e-08],
       [  1.00000000e+00,   4.50736670e-10],
       [  1.00000000e+00,   1.27155646e-08],
       [  1.63780116e-02,   9.83622015e-01],
       [  1.00000000e+00,   1.00191123e-11],
       [  1.00000000e+00,   8.86633100e-10],
       [  1.00000000e+00,   8.52195647e-09],
       [  1.00000000e+00,   2.05669912e-10],
       [  1.00000000e+00,   1.21613803e-08],
       [  1.25748190e-14,   1.00000000e+00],
       [  1.00000000e+00,   3.64715333e-08],
       [  2.40057912e-02,   9.75994229e-01],
       [  1.00000000e+00,   1.60403895e-11],
       [  1.00000000e+00,   6.63837518e-09],
       [  1.00000000e+00,   6.92635021e-23],
       [  1.00000000e+00,   9.06929566e-12],
       [  9.97506440e-01,   2.49362085e-03],
       [  1.00000000e+00,   1.60579267e-15],
       [  1.00000000e+00,   1.42051582e-09],
       [  9.99998808e-01,   1.17872582e-06],
       [  9.99998450e-01,   1.50924689e-06],
       [  9.99999285e-01,   7.70872020e-07],
       [  9.99986649e-01,   1.33832445e-05],
       [  1.00000000e+00,   4.13898995e-08],
       [  9.95781660e-01,   4.21831524e-03],
       [  1.00000000e+00,   6.33169683e-10],
       [  9.86253858e-01,   1.37461079e-02],
       [  1.00000000e+00,   2.20828262e-08],
       [  8.97186756e-01,   1.02813236e-01],
       [  1.76940709e-01,   8.23059320e-01],
       [  1.09679217e-03,   9.98903155e-01],
       [  9.99996662e-01,   3.37050460e-06],
       [  1.00000000e+00,   9.31325683e-09],
       [  1.00000000e+00,   3.99776342e-14],
       [  1.00000000e+00,   9.37404154e-10],
       [  9.99706209e-01,   2.93755991e-04],
       [  3.04562156e-04,   9.99695420e-01],
       [  4.57073515e-03,   9.95429277e-01],
       [  1.00000000e+00,   1.28642404e-13],
       [  9.97191012e-01,   2.80898274e-03],
       [  7.08220541e-01,   2.91779488e-01],
       [  9.99931097e-01,   6.88531582e-05],
       [  9.99686241e-01,   3.13809665e-04],
       [  9.99980688e-01,   1.93021224e-05],
       [  9.99998093e-01,   1.89938442e-06],
       [  1.00000000e+00,   5.15498998e-11],
       [  1.00000000e+00,   6.63272855e-17],
       [  1.00000000e+00,   2.53280046e-14],
       [  9.99999881e-01,   5.99793850e-08],
       [  4.03057486e-02,   9.59694266e-01],
       [  7.21912384e-02,   9.27808702e-01],
       [  9.90763843e-01,   9.23623797e-03],
       [  1.00000000e+00,   4.53907392e-13],
       [  1.00000000e+00,   1.76316351e-12],
       [  1.20003580e-03,   9.98799920e-01],
       [  9.99999046e-01,   1.00636862e-06],
       [  1.00000000e+00,   8.66220182e-13],
       [  1.00000000e+00,   4.14777590e-09],
       [  5.70077375e-02,   9.42992210e-01],
       [  6.56816829e-03,   9.93431866e-01],
       [  9.80510414e-01,   1.94895752e-02],
       [  8.38613790e-03,   9.91613865e-01],
       [  9.94996548e-01,   5.00346394e-03],
       [  1.00000000e+00,   1.21470771e-08],
       [  9.99998331e-01,   1.63975039e-06],
       [  1.00000000e+00,   2.70132823e-08],
       [  1.00000000e+00,   4.06455121e-12],
       [  9.55926112e-07,   9.99999046e-01],
       [  1.00000000e+00,   2.13286458e-10],
       [  8.59646261e-01,   1.40353769e-01],
       [  1.00000000e+00,   2.81609158e-09],
       [  9.99999881e-01,   1.05152310e-07],
       [  1.00000000e+00,   1.46881192e-13],
       [  3.37449014e-02,   9.66255069e-01],
       [  9.99992847e-01,   7.12007704e-06],
       [  9.99783099e-01,   2.16947446e-04],
       [  1.00000000e+00,   7.23513638e-10],
       [  1.00000000e+00,   8.29704252e-13],
       [  9.99408722e-01,   5.91335178e-04],
       [  1.00000000e+00,   2.38379316e-10],
       [  9.99991775e-01,   8.21493904e-06],
       [  9.99962568e-01,   3.74736010e-05],
       [  1.00000000e+00,   4.40679741e-12],
       [  9.99985576e-01,   1.44810192e-05],
       [  1.72896519e-01,   8.27103496e-01],
       [  1.07187415e-02,   9.89281178e-01],
       [  3.44011234e-03,   9.96559918e-01],
       [  9.99999404e-01,   5.57424244e-07],
       [  9.99082327e-01,   9.17693775e-04],
       [  9.99998093e-01,   1.90471553e-06],
       [  1.00000000e+00,   1.61352126e-10],
       [  1.00000000e+00,   9.42395359e-13],
       [  9.92796123e-01,   7.20382063e-03],
       [  1.00000000e+00,   1.57830584e-08],
       [  1.00000000e+00,   1.56971987e-15],
       [  9.98684943e-01,   1.31505390e-03],
       [  9.99996662e-01,   3.33628896e-06],
       [  9.44218397e-01,   5.57815805e-02],
       [  6.41771108e-02,   9.35822904e-01],
       [  1.00000000e+00,   1.60415059e-09],
       [  9.99808729e-01,   1.91253770e-04],
       [  4.25532181e-03,   9.95744646e-01],
       [  1.00000000e+00,   1.39949146e-08],
       [  1.00000000e+00,   4.36797489e-13],
       [  1.00000000e+00,   3.79696968e-12],
       [  9.57793593e-01,   4.22064811e-02],
       [  9.99999642e-01,   3.16412724e-07],
       [  1.00000000e+00,   1.00767016e-11],
       [  9.99960661e-01,   3.93816263e-05],
       [  1.00000000e+00,   2.37325784e-11],
       [  1.00000000e+00,   3.95568662e-08],
       [  9.99851346e-01,   1.48610998e-04],
       [  4.07182937e-03,   9.95928109e-01],
       [  1.00000000e+00,   7.56628926e-11],
       [  1.00000000e+00,   2.60296038e-12],
       [  9.99999762e-01,   2.92505348e-07],
       [  5.38654141e-02,   9.46134567e-01],
       [  9.99996662e-01,   3.28740680e-06],
       [  9.99987245e-01,   1.27193516e-05],
       [  9.98968124e-01,   1.03189040e-03],
       [  9.99384999e-01,   6.14952936e-04],
       [  9.99984622e-01,   1.54268946e-05],
       [  1.00000000e+00,   4.19389801e-10],
       [  1.00000000e+00,   5.29668377e-13],
       [  1.00000000e+00,   4.92776718e-13],
       [  9.99994516e-01,   5.52847678e-06],
       [  8.55198920e-01,   1.44801095e-01],
       [  1.00000000e+00,   2.10576931e-14],
       [  1.00000000e+00,   3.18217772e-08],
       [  1.43963620e-02,   9.85603690e-01],
       [  9.99999762e-01,   1.94984779e-07],
       [  1.00000000e+00,   3.51057643e-13],
       [  1.00000000e+00,   4.00819135e-11],
       [  2.88269226e-03,   9.97117281e-01],
       [  9.99833465e-01,   1.66493468e-04],
       [  9.97124732e-01,   2.87530874e-03],
       [  8.72349977e-01,   1.27650082e-01],
       [  9.99991417e-01,   8.60157888e-06],
       [  7.37464754e-03,   9.92625296e-01],
       [  1.00000000e+00,   1.25247078e-12],
       [  4.84207422e-02,   9.51579273e-01],
       [  1.00000000e+00,   3.04910402e-10],
       [  1.00000000e+00,   6.94036428e-09],
       [  2.64786091e-03,   9.97352123e-01],
       [  1.00000000e+00,   4.53861526e-09],
       [  5.93228033e-03,   9.94067669e-01],
       [  5.09469677e-03,   9.94905353e-01],
       [  1.58681087e-02,   9.84131873e-01],
       [  1.00000000e+00,   2.35901472e-11],
       [  9.98698950e-01,   1.30096904e-03],
       [  1.00000000e+00,   1.73976332e-15],
       [  9.99999046e-01,   9.50754668e-07],
       [  9.99940276e-01,   5.97653270e-05],
       [  9.93408799e-01,   6.59123575e-03],
       [  9.81047809e-01,   1.89521648e-02],
       [  9.97092128e-01,   2.90781143e-03],
       [  9.99680638e-01,   3.19412415e-04],
       [  9.99859691e-01,   1.40344899e-04],
       [  1.00000000e+00,   5.84735524e-11],
       [  1.61855214e-03,   9.98381495e-01],
       [  9.62868571e-01,   3.71314920e-02],
       [  1.00000000e+00,   2.08608104e-14],
       [  1.00000000e+00,   1.09285958e-09],
       [  9.99992728e-01,   7.29761132e-06],
       [  9.99833822e-01,   1.66190832e-04],
       [  9.99889731e-01,   1.10314133e-04],
       [  1.00000000e+00,   1.71272085e-09],
       [  9.99999881e-01,   7.06925292e-08],
       [  9.99997973e-01,   2.05446054e-06],
       [  9.98331606e-01,   1.66838092e-03],
       [  9.01462361e-02,   9.09853756e-01],
       [  1.00000000e+00,   2.03968873e-11],
       [  9.99999642e-01,   4.16047214e-07],
       [  1.00000000e+00,   6.58931620e-09],
       [  1.34354401e-02,   9.86564636e-01],
       [  1.00000000e+00,   3.60211752e-13],
       [  9.99999762e-01,   2.49756340e-07],
       [  1.00000000e+00,   1.35197721e-13],
       [  9.99999881e-01,   1.69840717e-07],
       [  9.92859364e-01,   7.14065880e-03],
       [  2.08264566e-03,   9.97917354e-01],
       [  1.00000000e+00,   1.41497845e-08],
       [  1.00000000e+00,   5.73373987e-12],
       [  9.99998808e-01,   1.16822184e-06],
       [  9.99997735e-01,   2.27003238e-06],
       [  9.29973722e-02,   9.07002628e-01],
       [  1.00000000e+00,   1.39875730e-12],
       [  1.13576057e-03,   9.98864293e-01],
       [  1.00000000e+00,   1.89494962e-08],
       [  1.00000000e+00,   1.92475302e-09],
       [  4.70994785e-03,   9.95290041e-01],
       [  9.92927372e-01,   7.07262661e-03],
       [  1.00000000e+00,   1.29170181e-11],
       [  9.99972701e-01,   2.73071892e-05],
       [  1.00000000e+00,   1.58940319e-10],
       [  2.27149867e-05,   9.99977231e-01],
       [  9.96167839e-01,   3.83209181e-03],
       [  1.00000000e+00,   4.36041692e-09],
       [  1.00000000e+00,   2.74426033e-12],
       [  9.99861360e-01,   1.38627671e-04],
       [  9.93383944e-01,   6.61600986e-03],
       [  9.99962687e-01,   3.73507683e-05],
       [  9.89573896e-01,   1.04260892e-02],
       [  9.95230973e-01,   4.76895319e-03],
       [  3.28875799e-03,   9.96711254e-01],
       [  9.99989390e-01,   1.06620155e-05],
       [  1.00000000e+00,   3.27083666e-10],
       [  1.00000000e+00,   1.40590303e-10],
       [  1.00000000e+00,   4.06158343e-08],
       [  9.99950886e-01,   4.91197716e-05],
       [  1.00000000e+00,   2.78245114e-12],
       [  3.64263617e-02,   9.63573635e-01],
       [  9.99504328e-01,   4.95659944e-04],
       [  9.99958992e-01,   4.09542845e-05],
       [  5.09787817e-03,   9.94902134e-01],
       [  9.99996662e-01,   3.33001708e-06],
       [  9.99946713e-01,   5.33106031e-05],
       [  9.99999881e-01,   1.18181617e-07],
       [  1.00000000e+00,   1.52418060e-08],
       [  9.95813191e-01,   4.18681838e-03],
       [  1.00000000e+00,   3.47629503e-09],
       [  9.90888953e-01,   9.11108777e-03],
       [  6.02732822e-02,   9.39726770e-01],
       [  9.88411605e-01,   1.15883788e-02],
       [  1.00000000e+00,   5.73068748e-09],
       [  1.00000000e+00,   1.18141616e-11],
       [  9.99889016e-01,   1.10962108e-04],
       [  8.46215979e-12,   1.00000000e+00],
       [  9.80402231e-01,   1.95977055e-02],
       [  1.00000000e+00,   3.36166289e-13],
       [  9.99999404e-01,   5.76993216e-07],
       [  9.99999166e-01,   8.73952274e-07],
       [  7.01957121e-02,   9.29804325e-01],
       [  1.55035325e-03,   9.98449683e-01],
       [  1.00000000e+00,   1.01377996e-10],
       [  1.00000000e+00,   1.82100793e-11],
       [  1.00000000e+00,   3.25540463e-12],
       [  1.00000000e+00,   1.29711741e-09],
       [  1.00573397e-03,   9.98994291e-01],
       [  1.00000000e+00,   2.57344857e-09],
       [  1.00000000e+00,   1.24967476e-11],
       [  1.00000000e+00,   2.56309640e-10],
       [  1.00000000e+00,   1.98705630e-09],
       [  1.00000000e+00,   1.15298537e-12],
       [  9.78253484e-01,   2.17464920e-02],
       [  4.28757891e-02,   9.57124233e-01],
       [  9.99998808e-01,   1.17485843e-06],
       [  9.99402642e-01,   5.97391801e-04],
       [  1.95776783e-02,   9.80422318e-01],
       [  1.00000000e+00,   1.96990602e-08],
       [  9.99492049e-01,   5.07909805e-04],
       [  9.99714792e-01,   2.85236340e-04],
       [  9.99996662e-01,   3.28271381e-06],
       [  1.00000000e+00,   5.51129758e-12],
       [  9.99999046e-01,   9.24383016e-07],
       [  9.87278342e-01,   1.27216848e-02],
       [  1.00000000e+00,   1.86039725e-12],
       [  1.00000000e+00,   3.71836485e-11],
       [  9.99976993e-01,   2.30459718e-05],
       [  1.00000000e+00,   1.41928938e-12],
       [  1.00000000e+00,   8.31741134e-11],
       [  1.00000000e+00,   1.97591249e-11],
       [  9.97482479e-01,   2.51754629e-03],
       [  1.06231123e-02,   9.89376903e-01],
       [  9.99999642e-01,   3.30791011e-07],
       [  1.00000000e+00,   7.76545939e-09],
       [  1.00000000e+00,   1.67049721e-10],
       [  9.84578311e-01,   1.54217137e-02],
       [  1.00000000e+00,   1.47617734e-11],
       [  1.00000000e+00,   5.70436719e-11],
       [  9.99997497e-01,   2.45918272e-06],
       [  1.00000000e+00,   1.26389411e-19],
       [  1.00000000e+00,   5.87360091e-11],
       [  1.00000000e+00,   7.72278617e-13],
       [  9.99630213e-01,   3.69710295e-04],
       [  1.00000000e+00,   1.77255849e-11],
       [  9.99999166e-01,   8.40471671e-07],
       [  9.99994040e-01,   5.93373306e-06],
       [  1.18872046e-01,   8.81127954e-01],
       [  1.00000000e+00,   1.08109224e-16],
       [  1.00000000e+00,   1.63808602e-11],
       [  9.99912739e-01,   8.72182572e-05],
       [  1.43260583e-02,   9.85673964e-01],
       [  9.97038722e-01,   2.96131335e-03],
       [  9.99999881e-01,   1.69614111e-07],
       [  1.00000000e+00,   2.49660764e-10],
       [  9.99993920e-01,   6.13029169e-06],
       [  1.00000000e+00,   1.34484035e-09],
       [  9.88722205e-01,   1.12777539e-02],
       [  9.99999881e-01,   1.55356730e-07],
       [  9.99977946e-01,   2.20534985e-05],
       [  9.99928713e-01,   7.13230475e-05],
       [  9.87058580e-01,   1.29414713e-02],
       [  9.99997020e-01,   2.96485427e-06],
       [  1.00000000e+00,   3.22561995e-08],
       [  1.00000000e+00,   1.61426499e-08],
       [  9.83405352e-01,   1.65946726e-02],
       [  1.00000000e+00,   1.05576681e-16],
       [  9.99999523e-01,   4.69146840e-07],
       [  9.99973178e-01,   2.68013137e-05],
       [  9.99986172e-01,   1.38578143e-05],
       [  1.00000000e+00,   3.21390809e-12],
       [  1.00000000e+00,   1.56338359e-10],
       [  9.99761283e-01,   2.38703913e-04],
       [  9.99999881e-01,   1.56546250e-07],
       [  1.00000000e+00,   1.86048771e-14],
       [  1.00000000e+00,   2.62180749e-10],
       [  1.00000000e+00,   6.37008350e-14],
       [  9.99999762e-01,   2.67419495e-07],
       [  1.00000000e+00,   1.11990470e-14],
       [  1.00000000e+00,   3.37515849e-11],
       [  9.99952793e-01,   4.72211759e-05],
       [  9.99985337e-01,   1.46248267e-05],
       [  1.25594452e-01,   8.74405563e-01],
       [  4.21584957e-07,   9.99999523e-01],
       [  1.00000000e+00,   3.22056791e-11],
       [  1.00000000e+00,   1.35755478e-11],
       [  9.99538898e-01,   4.61149146e-04],
       [  9.99999642e-01,   3.55551975e-07],
       [  8.89149010e-01,   1.10850938e-01],
       [  1.00000000e+00,   6.93857623e-13],
       [  9.99965310e-01,   3.46793313e-05],
       [  9.96848762e-01,   3.15128500e-03],
       [  9.99999166e-01,   7.97617759e-07],
       [  1.00000000e+00,   1.45754635e-08],
       [  9.93163228e-01,   6.83681900e-03],
       [  1.00000000e+00,   3.11485594e-11],
       [  9.99845386e-01,   1.54547772e-04],
       [  1.00000000e+00,   3.62247743e-09],
       [  9.97365654e-01,   2.63437885e-03],
       [  1.44120320e-04,   9.99855876e-01],
       [  3.85690071e-02,   9.61430967e-01],
       [  1.00000000e+00,   5.76927499e-11],
       [  9.99999166e-01,   8.25952100e-07],
       [  1.00000000e+00,   3.90684152e-09],
       [  9.99843836e-01,   1.56178678e-04],
       [  9.99999881e-01,   8.82278215e-08],
       [  1.00000000e+00,   4.68134083e-08],
       [  1.00000000e+00,   2.11254360e-18],
       [  9.94185507e-01,   5.81454067e-03],
       [  8.17705452e-01,   1.82294533e-01],
       [  1.00000000e+00,   2.43584124e-13],
       [  1.00000000e+00,   1.32014568e-08],
       [  9.39866364e-01,   6.01336919e-02],
       [  9.99996901e-01,   3.12274778e-06],
       [  1.00000000e+00,   7.58424851e-11],
       [  9.99992967e-01,   7.08533571e-06],
       [  9.87986475e-02,   9.01201308e-01],
       [  1.00000000e+00,   1.35674002e-14],
       [  1.00000000e+00,   2.75164957e-09],
       [  9.99999762e-01,   1.86582795e-07],
       [  9.99910355e-01,   8.96781421e-05],
       [  9.50948954e-01,   4.90510426e-02],
       [  9.99568403e-01,   4.31627588e-04],
       [  2.22208910e-03,   9.97777879e-01],
       [  1.00000000e+00,   2.20105290e-09],
       [  1.00000000e+00,   2.76623258e-08],
       [  1.00000000e+00,   9.05081010e-11],
       [  9.99996662e-01,   3.29289810e-06],
       [  1.00000000e+00,   1.11779275e-09],
       [  9.99998450e-01,   1.51502661e-06],
       [  1.00000000e+00,   3.91953525e-10],
       [  9.99835134e-01,   1.64795580e-04],
       [  1.00000000e+00,   3.76431872e-12],
       [  1.00000000e+00,   1.47042974e-16],
       [  9.96022165e-01,   3.97783332e-03],
       [  9.99999404e-01,   6.15018564e-07],
       [  1.00000000e+00,   1.52876767e-10],
       [  3.97410691e-02,   9.60258961e-01],
       [  9.99999881e-01,   6.21851726e-08],
       [  9.99990106e-01,   9.93422236e-06],
       [  9.84703600e-01,   1.52964462e-02],
       [  9.89549756e-01,   1.04502328e-02],
       [  9.99953628e-01,   4.63392862e-05],
       [  1.00000000e+00,   1.05057438e-08],
       [  1.00000000e+00,   9.38605860e-11],
       [  9.99999046e-01,   9.12445159e-07],
       [  9.61719036e-01,   3.82809825e-02],
       [  1.00000000e+00,   2.14634510e-09],
       [  1.00000000e+00,   7.77629317e-13],
       [  1.00000000e+00,   3.96895919e-11],
       [  1.00000000e+00,   3.08183634e-09],
       [  9.99999762e-01,   1.78894311e-07],
       [  1.00000000e+00,   3.68577608e-12],
       [  1.00000000e+00,   7.71172102e-12],
       [  4.39661071e-02,   9.56033826e-01],
       [  9.99619126e-01,   3.80839774e-04],
       [  1.53205520e-03,   9.98467863e-01],
       [  9.99999642e-01,   3.00585185e-07],
       [  4.05371049e-03,   9.95946348e-01],
       [  9.99148369e-01,   8.51589022e-04],
       [  1.00000000e+00,   7.19556928e-14],
       [  4.43990871e-07,   9.99999523e-01],
       [  1.44476760e-02,   9.85552251e-01],
       [  9.94328797e-01,   5.67125482e-03],
       [  1.00000000e+00,   4.84677507e-08],
       [  1.00000000e+00,   1.20118693e-10],
       [  9.99999285e-01,   6.84032216e-07],
       [  9.99999881e-01,   7.54580611e-08],
       [  9.99988914e-01,   1.11234122e-05],
       [  9.99999642e-01,   3.20076254e-07],
       [  1.00000000e+00,   2.16526068e-08],
       [  9.99262154e-01,   7.37862254e-04],
       [  1.00000000e+00,   1.84656582e-10],
       [  9.96872666e-04,   9.99003112e-01],
       [  9.99912262e-01,   8.77213824e-05],
       [  7.48493910e-01,   2.51506120e-01],
       [  1.00000000e+00,   4.07122171e-13],
       [  1.49484214e-04,   9.99850512e-01],
       [  1.00000000e+00,   1.04806918e-11],
       [  1.00000000e+00,   2.82053181e-09],
       [  7.57128419e-03,   9.92428720e-01],
       [  9.99731719e-01,   2.68245640e-04],
       [  9.86689270e-01,   1.33107612e-02],
       [  1.00000000e+00,   4.72146378e-10],
       [  1.00000000e+00,   1.91357774e-09],
       [  1.00000000e+00,   6.13582915e-13],
       [  1.00000000e+00,   1.98619496e-10],
       [  9.99471247e-01,   5.28819335e-04],
       [  9.99993563e-01,   6.47816205e-06],
       [  9.99918461e-01,   8.15274034e-05],
       [  1.00000000e+00,   5.58172920e-13],
       [  1.00000000e+00,   7.99934874e-09],
       [  1.00000000e+00,   9.12826909e-15],
       [  1.00000000e+00,   1.24082106e-10],
       [  9.97248948e-01,   2.75107892e-03],
       [  9.99999881e-01,   9.16953553e-08],
       [  1.00000000e+00,   3.52129490e-08],
       [  9.44486618e-01,   5.55133894e-02],
       [  9.99999642e-01,   3.15677283e-07],
       [  1.00000000e+00,   1.24398214e-10],
       [  9.96027708e-01,   3.97226214e-03],
       [  9.97628033e-01,   2.37197289e-03],
       [  1.00000000e+00,   2.77241229e-12],
       [  9.99999762e-01,   2.21414126e-07],
       [  9.90820706e-01,   9.17936303e-03],
       [  9.99999881e-01,   6.66470257e-08],
       [  9.99906540e-01,   9.34865602e-05],
       [  1.00000000e+00,   5.36628955e-13],
       [  1.00000000e+00,   1.01701821e-10],
       [  1.00000000e+00,   7.31026406e-10],
       [  1.02546960e-01,   8.97453070e-01],
       [  1.00000000e+00,   2.66374094e-17],
       [  9.79468942e-01,   2.05310099e-02],
       [  1.00000000e+00,   5.63526927e-13],
       [  1.00000000e+00,   3.22298075e-16],
       [  1.00000000e+00,   1.84641347e-11]], dtype=float32)

In [37]:
import model_export.py



NameErrorTraceback (most recent call last)
<ipython-input-37-1ce8a58815b3> in <module>()
----> 1 import model_export.py

/home/botty/Documents/CCFD/ccfd_dnn/model_export.py in <module>()
      1 import h5py
      2 import numpy as np
----> 3 from model import *
      4 import keras
      5 import argparse

/home/botty/Documents/CCFD/ccfd_dnn/model.py in <module>()
    270     return train[:,0:discard_id],test[:,0:discard_id],train[:,discard_id],test[:,discard_id]
    271 
--> 272 def chunck_seq(seq_list,seq_len=seq_len_param):
    273     split_seq = map(lambda x: np.array_split(x,math.ceil(len(x)/seq_len)) if len(x)>seq_len else [x],seq_list)
    274     flattened = [sequence for user_seq in split_seq for sequence in user_seq]

NameError: name 'seq_len_param' is not defined

In [25]:



0.991576

In [30]:



             precision    recall  f1-score   support

    class 0       0.33      1.00      0.50         1
    class 1       0.00      0.00      0.00         2
    class 2       1.00      1.00      1.00         1

avg / total       0.33      0.50      0.38         4


In [32]:



Out[32]:
0.44333333333333336

In [33]:



Out[33]:
0.3325

In [ ]: