Face Generation

In this project, you'll use generative adversarial networks to generate new images of faces.

Get the Data

You'll be using two datasets in this project:

  • MNIST
  • CelebA

Since the celebA dataset is complex and you're doing GANs in a project for the first time, we want you to test your neural network on MNIST before CelebA. Running the GANs on MNIST will allow you to see how well your model trains sooner.

If you're using FloydHub, set data_dir to "/input" and use the FloydHub data ID "R5KrjnANiKVhLWAkpXhNBe".


In [4]:
data_dir = '/input'

# FloydHub - Use with data ID "R5KrjnANiKVhLWAkpXhNBe"
#data_dir = '/input'


"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import helper

helper.download_extract('mnist', data_dir)
helper.download_extract('celeba', data_dir)


Found mnist Data
Found celeba Data

Explore the Data

MNIST

As you're aware, the MNIST dataset contains images of handwritten digits. You can view the first number of examples by changing show_n_images.


In [5]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
%matplotlib inline
import os
from glob import glob
from matplotlib import pyplot

mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'mnist/*.jpg'))[:show_n_images], 28, 28, 'L')
pyplot.imshow(helper.images_square_grid(mnist_images, 'L'), cmap='gray')


Out[5]:
<matplotlib.image.AxesImage at 0x7f4b1c061400>

CelebA

The CelebFaces Attributes Dataset (CelebA) dataset contains over 200,000 celebrity images with annotations. Since you're going to be generating faces, you won't need the annotations. You can view the first number of examples by changing show_n_images.


In [6]:
show_n_images = 25

"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
mnist_images = helper.get_batch(glob(os.path.join(data_dir, 'img_align_celeba/*.jpg'))[:show_n_images], 28, 28, 'RGB')
pyplot.imshow(helper.images_square_grid(mnist_images, 'RGB'))


Out[6]:
<matplotlib.image.AxesImage at 0x7f4b1c411cc0>

Preprocess the Data

Since the project's main focus is on building the GANs, we'll preprocess the data for you. The values of the MNIST and CelebA dataset will be in the range of -0.5 to 0.5 of 28x28 dimensional images. The CelebA images will be cropped to remove parts of the image that don't include a face, then resized down to 28x28.

The MNIST images are black and white images with a single color channel while the CelebA images have 3 color channels (RGB color channel).

Build the Neural Network

You'll build the components necessary to build a GANs by implementing the following functions below:

  • model_inputs
  • discriminator
  • generator
  • model_loss
  • model_opt
  • train

Check the Version of TensorFlow and Access to GPU

This will check to make sure you have the correct version of TensorFlow and access to a GPU


In [7]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
from distutils.version import LooseVersion
import warnings
import tensorflow as tf

# Check TensorFlow Version
assert LooseVersion(tf.__version__) >= LooseVersion('1.0'), 'Please use TensorFlow version 1.0 or newer.  You are using {}'.format(tf.__version__)
print('TensorFlow Version: {}'.format(tf.__version__))

# Check for a GPU
if not tf.test.gpu_device_name():
    warnings.warn('No GPU found. Please use a GPU to train your neural network.')
else:
    print('Default GPU Device: {}'.format(tf.test.gpu_device_name()))


TensorFlow Version: 1.0.0
Default GPU Device: /gpu:0

Input

Implement the model_inputs function to create TF Placeholders for the Neural Network. It should create the following placeholders:

  • Real input images placeholder with rank 4 using image_width, image_height, and image_channels.
  • Z input placeholder with rank 2 using z_dim.
  • Learning rate placeholder with rank 0.

Return the placeholders in the following the tuple (tensor of real input images, tensor of z data)


In [8]:
import problem_unittests as tests

def model_inputs(image_width, image_height, image_channels, z_dim):
    """
    Create the model inputs
    :param image_width: The input image width
    :param image_height: The input image height
    :param image_channels: The number of image channels
    :param z_dim: The dimension of Z
    :return: Tuple of (tensor of real input images, tensor of z data, learning rate)
    """
    # TODO: Implement Function
    
    input_real = tf.placeholder(tf.float32, (None, image_width, image_height, image_channels), name='input_real')
    input_z = tf.placeholder(tf.float32, (None, z_dim), name='input_z')
    learning_rate = tf.placeholder(tf.float32, name='learning_rate')

    return input_real, input_z, learning_rate


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_inputs(model_inputs)


Tests Passed

Discriminator

Implement discriminator to create a discriminator neural network that discriminates on images. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "discriminator" to allow the variables to be reused. The function should return a tuple of (tensor output of the generator, tensor logits of the generator).


In [9]:
def discriminator(images, reuse=False):
    """
    Create the discriminator network
    :param image: Tensor of input image(s)
    :param reuse: Boolean if the weights should be reused
    :return: Tuple of (tensor output of the discriminator, tensor logits of the discriminator)
    """
    # TODO: Implement Function
    
    alpha = 0.1
    
    with tf.variable_scope('discriminator', reuse=reuse):
        #Input layer: 28x28x1 or 3
        x1 = tf.layers.conv2d(images, 128, 5, strides=2, padding='same')
        relu1 = tf.maximum(alpha * x1, x1)
        #14x14x128
        
        x2 = tf.layers.conv2d(relu1, 256, 5, strides=2, padding='same')
        bn2 = tf.layers.batch_normalization(x2, training=True)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 7x7x256

        x3 = tf.layers.conv2d(relu2, 512, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=True)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 4x4x512

        # Flatten it
        flat = tf.reshape(relu3, (-1, 4*4*512))
        logits = tf.layers.dense(flat, 1)
        out = tf.sigmoid(logits)
        
        return out, logits


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_discriminator(discriminator, tf)


Tests Passed

Generator

Implement generator to generate an image using z. This function should be able to reuse the variabes in the neural network. Use tf.variable_scope with a scope name of "generator" to allow the variables to be reused. The function should return the generated 28 x 28 x out_channel_dim images.


In [10]:
def generator(z, out_channel_dim, is_train=True):
    """
    Create the generator network
    :param z: Input z
    :param out_channel_dim: The number of channels in the output image
    :param is_train: Boolean if generator is being used for training
    :return: The tensor output of the generator
    """
    # TODO: Implement Function
    with tf.variable_scope('generator', reuse = not is_train):

        alpha = 0.1

        # Fully connected
        x1 = tf.layers.dense(z, 7*7*512)
        relu1 = tf.maximum(alpha * x1, x1)

        # Reshape it to start the convolutional stack
        x2 = tf.reshape(x1, (-1, 7, 7, 512))
        bn2 = tf.layers.batch_normalization(x2, training=is_train)
        relu2 = tf.maximum(alpha * bn2, bn2)
        # 7x7x512

        x3 = tf.layers.conv2d_transpose(relu2, 256, 5, strides=2, padding='same')
        bn3 = tf.layers.batch_normalization(x3, training=is_train)
        relu3 = tf.maximum(alpha * bn3, bn3)
        # 14x14x256

        x4 = tf.layers.conv2d_transpose(relu3, 128, 5, strides=2, padding='same')
        bn4 = tf.layers.batch_normalization(x4, training=is_train)
        relu4 = tf.maximum(alpha * bn4, bn4)
        # 28x28x128

        logits = tf.layers.conv2d_transpose(relu4, out_channel_dim, 5, strides=1, padding='same')
        # 28x28x1 or 3

        out = tf.tanh(logits)

        return out


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_generator(generator, tf)


Tests Passed

Loss

Implement model_loss to build the GANs for training and calculate the loss. The function should return a tuple of (discriminator loss, generator loss). Use the following functions you implemented:

  • discriminator(images, reuse=False)
  • generator(z, out_channel_dim, is_train=True)

In [11]:
def model_loss(input_real, input_z, out_channel_dim):
    """
    Get the loss for the discriminator and generator
    :param input_real: Images from the real dataset
    :param input_z: Z input
    :param out_channel_dim: The number of channels in the output image
    :return: A tuple of (discriminator loss, generator loss)
    """
    # TODO: Implement Function
    
    g_model = generator(input_z, out_channel_dim)
    d_model_real, d_logits_real = discriminator(input_real)
    d_model_fake, d_logits_fake = discriminator(g_model, reuse=True)

    d_loss_real = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_real, labels=tf.ones_like(d_model_real) * 0.9))
    d_loss_fake = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.zeros_like(d_model_fake)))
    g_loss = tf.reduce_mean(
        tf.nn.sigmoid_cross_entropy_with_logits(logits=d_logits_fake, labels=tf.ones_like(d_model_fake)))

    d_loss = d_loss_real + d_loss_fake

    return d_loss, g_loss

"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_loss(model_loss)


Tests Passed

Optimization

Implement model_opt to create the optimization operations for the GANs. Use tf.trainable_variables to get all the trainable variables. Filter the variables with names that are in the discriminator and generator scope names. The function should return a tuple of (discriminator training operation, generator training operation).


In [12]:
def model_opt(d_loss, g_loss, learning_rate, beta1):
    """
    Get optimization operations
    :param d_loss: Discriminator loss Tensor
    :param g_loss: Generator loss Tensor
    :param learning_rate: Learning Rate Placeholder
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :return: A tuple of (discriminator training operation, generator training operation)
    """
    # TODO: Implement Function
    
    # Get weights and biases to update
    t_vars = tf.trainable_variables()
    d_vars = [var for var in t_vars if var.name.startswith('discriminator')]
    g_vars = [var for var in t_vars if var.name.startswith('generator')]

    # Optimize
    with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
        d_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(d_loss, var_list=d_vars)
        g_train_opt = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(g_loss, var_list=g_vars)

    return d_train_opt, g_train_opt


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
tests.test_model_opt(model_opt, tf)


Tests Passed

Neural Network Training

Show Output

Use this function to show the current output of the generator during training. It will help you determine how well the GANs is training.


In [13]:
"""
DON'T MODIFY ANYTHING IN THIS CELL
"""
import numpy as np

def show_generator_output(sess, n_images, input_z, out_channel_dim, image_mode):
    """
    Show example output for the generator
    :param sess: TensorFlow session
    :param n_images: Number of Images to display
    :param input_z: Input Z Tensor
    :param out_channel_dim: The number of channels in the output image
    :param image_mode: The mode to use for images ("RGB" or "L")
    """
    cmap = None if image_mode == 'RGB' else 'gray'
    z_dim = input_z.get_shape().as_list()[-1]
    example_z = np.random.uniform(-1, 1, size=[n_images, z_dim])

    samples = sess.run(
        generator(input_z, out_channel_dim, False),
        feed_dict={input_z: example_z})

    images_grid = helper.images_square_grid(samples, image_mode)
    pyplot.imshow(images_grid, cmap=cmap)
    pyplot.show()

Train

Implement train to build and train the GANs. Use the following functions you implemented:

  • model_inputs(image_width, image_height, image_channels, z_dim)
  • model_loss(input_real, input_z, out_channel_dim)
  • model_opt(d_loss, g_loss, learning_rate, beta1)

Use the show_generator_output to show generator output while you train. Running show_generator_output for every batch will drastically increase training time and increase the size of the notebook. It's recommended to print the generator output every 100 batches.


In [14]:
def train(epoch_count, batch_size, z_dim, learning_rate, beta1, get_batches, data_shape, data_image_mode):
    """
    Train the GAN
    :param epoch_count: Number of epochs
    :param batch_size: Batch Size
    :param z_dim: Z dimension
    :param learning_rate: Learning Rate
    :param beta1: The exponential decay rate for the 1st moment in the optimizer
    :param get_batches: Function to get batches
    :param data_shape: Shape of the data
    :param data_image_mode: The image mode to use for images ("RGB" or "L")
    """
    # TODO: Build Model

    input_real, input_z, lr = model_inputs(data_shape[1], data_shape[2], data_shape[3], z_dim)
    d_loss, g_loss = model_loss(input_real, input_z, data_shape[3])
    d_opt, g_opt = model_opt(d_loss, g_loss, lr, beta1)
        
    samples, losses = [], []
    steps = 0
    
    print_every = 100
    show_every = 300

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for epoch_i in range(epoch_count):
            for batch_images in get_batches(batch_size):
                batch_images = batch_images * 2
                steps += 1
                # TODO: Train Model
                # Sample random noise for G
                batch_z = np.random.uniform(-1, 1, size=(batch_size, z_dim))

                # Run optimizers
                _ = sess.run(d_opt, feed_dict={input_real: batch_images, input_z: batch_z,\
                                               lr: learning_rate})
                _ = sess.run(g_opt, feed_dict={input_z: batch_z, input_real: batch_images, lr: learning_rate})            
    

                if steps % print_every == 0:
                    # At the end of each epoch, get the losses and print them out
                    train_loss_d = d_loss.eval({input_z: batch_z, input_real: batch_images})
                    train_loss_g = g_loss.eval({input_z: batch_z})

                    print("Epoch {}/{}...".format(epoch_i+1, epochs),
                          "Discriminator Loss: {:.4f}...".format(train_loss_d),
                          "Generator Loss: {:.4f}".format(train_loss_g))
                    # Save losses to view after training
                    losses.append((train_loss_d, train_loss_g))

                if steps % show_every == 0:
                    show_generator_output(sess, 25, input_z, data_shape[3], data_image_mode)

MNIST

Test your GANs architecture on MNIST. After 2 epochs, the GANs should be able to generate images that look like handwritten digits. Make sure the loss of the generator is lower than the loss of the discriminator or close to 0.


In [15]:
batch_size = 32
z_dim = 128
learning_rate = 0.0002
beta1 = 0.3


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 2

mnist_dataset = helper.Dataset('mnist', glob(os.path.join(data_dir, 'mnist/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, mnist_dataset.get_batches,
          mnist_dataset.shape, mnist_dataset.image_mode)


Epoch 1/2... Discriminator Loss: 1.7905... Generator Loss: 0.3470
Epoch 1/2... Discriminator Loss: 1.2696... Generator Loss: 1.0798
Epoch 1/2... Discriminator Loss: 1.4345... Generator Loss: 0.5903
Epoch 1/2... Discriminator Loss: 1.5293... Generator Loss: 0.4236
Epoch 1/2... Discriminator Loss: 1.1381... Generator Loss: 1.2729
Epoch 1/2... Discriminator Loss: 0.7789... Generator Loss: 2.0487
Epoch 1/2... Discriminator Loss: 0.8935... Generator Loss: 1.5377
Epoch 1/2... Discriminator Loss: 0.6981... Generator Loss: 2.4642
Epoch 1/2... Discriminator Loss: 1.1889... Generator Loss: 0.6503
Epoch 1/2... Discriminator Loss: 1.0064... Generator Loss: 1.0596
Epoch 1/2... Discriminator Loss: 1.1921... Generator Loss: 2.8096
Epoch 1/2... Discriminator Loss: 1.0796... Generator Loss: 0.8446
Epoch 1/2... Discriminator Loss: 1.6416... Generator Loss: 2.6809
Epoch 1/2... Discriminator Loss: 0.8711... Generator Loss: 1.3100
Epoch 1/2... Discriminator Loss: 0.8268... Generator Loss: 1.2500
Epoch 1/2... Discriminator Loss: 1.0843... Generator Loss: 0.8578
Epoch 1/2... Discriminator Loss: 1.4220... Generator Loss: 0.5460
Epoch 1/2... Discriminator Loss: 0.8840... Generator Loss: 1.0212
Epoch 2/2... Discriminator Loss: 2.0085... Generator Loss: 0.3424
Epoch 2/2... Discriminator Loss: 0.6829... Generator Loss: 1.7800
Epoch 2/2... Discriminator Loss: 1.4908... Generator Loss: 0.5234
Epoch 2/2... Discriminator Loss: 0.6650... Generator Loss: 1.6394
Epoch 2/2... Discriminator Loss: 1.6896... Generator Loss: 0.4100
Epoch 2/2... Discriminator Loss: 1.2702... Generator Loss: 0.7279
Epoch 2/2... Discriminator Loss: 0.6118... Generator Loss: 2.0421
Epoch 2/2... Discriminator Loss: 1.8772... Generator Loss: 0.3968
Epoch 2/2... Discriminator Loss: 0.6220... Generator Loss: 1.7394
Epoch 2/2... Discriminator Loss: 0.9527... Generator Loss: 2.1419
Epoch 2/2... Discriminator Loss: 0.7299... Generator Loss: 1.3345
Epoch 2/2... Discriminator Loss: 0.6800... Generator Loss: 2.0085
Epoch 2/2... Discriminator Loss: 0.6936... Generator Loss: 2.5610
Epoch 2/2... Discriminator Loss: 0.6246... Generator Loss: 1.6605
Epoch 2/2... Discriminator Loss: 0.9961... Generator Loss: 1.0774
Epoch 2/2... Discriminator Loss: 0.9412... Generator Loss: 0.9452
Epoch 2/2... Discriminator Loss: 0.9521... Generator Loss: 1.0266
Epoch 2/2... Discriminator Loss: 0.6251... Generator Loss: 1.6302
Epoch 2/2... Discriminator Loss: 0.6583... Generator Loss: 1.5804

CelebA

Run your GANs on CelebA. It will take around 20 minutes on the average GPU to run one epoch. You can run the whole epoch or stop when it starts to generate realistic faces.


In [16]:
batch_size = 32
z_dim = 128
learning_rate = 0.0002
beta1 = 0.3


"""
DON'T MODIFY ANYTHING IN THIS CELL THAT IS BELOW THIS LINE
"""
epochs = 1

celeba_dataset = helper.Dataset('celeba', glob(os.path.join(data_dir, 'img_align_celeba/*.jpg')))
with tf.Graph().as_default():
    train(epochs, batch_size, z_dim, learning_rate, beta1, celeba_dataset.get_batches,
          celeba_dataset.shape, celeba_dataset.image_mode)


Epoch 1/1... Discriminator Loss: 0.4479... Generator Loss: 3.7537
Epoch 1/1... Discriminator Loss: 0.6122... Generator Loss: 1.6976
Epoch 1/1... Discriminator Loss: 1.0667... Generator Loss: 0.8067
Epoch 1/1... Discriminator Loss: 1.0833... Generator Loss: 0.8646
Epoch 1/1... Discriminator Loss: 0.5513... Generator Loss: 2.3634
Epoch 1/1... Discriminator Loss: 0.6962... Generator Loss: 1.5263
Epoch 1/1... Discriminator Loss: 0.9922... Generator Loss: 1.0838
Epoch 1/1... Discriminator Loss: 0.5733... Generator Loss: 2.5159
Epoch 1/1... Discriminator Loss: 0.7866... Generator Loss: 1.6738
Epoch 1/1... Discriminator Loss: 0.9637... Generator Loss: 0.8680
Epoch 1/1... Discriminator Loss: 2.9547... Generator Loss: 0.0878
Epoch 1/1... Discriminator Loss: 0.9850... Generator Loss: 1.5092
Epoch 1/1... Discriminator Loss: 0.5936... Generator Loss: 2.6987
Epoch 1/1... Discriminator Loss: 0.9516... Generator Loss: 0.9903
Epoch 1/1... Discriminator Loss: 1.0010... Generator Loss: 0.9019
Epoch 1/1... Discriminator Loss: 1.6286... Generator Loss: 0.4978
Epoch 1/1... Discriminator Loss: 0.6700... Generator Loss: 1.7078
Epoch 1/1... Discriminator Loss: 1.3334... Generator Loss: 0.5335
Epoch 1/1... Discriminator Loss: 0.7289... Generator Loss: 1.4291
Epoch 1/1... Discriminator Loss: 2.4892... Generator Loss: 3.3678
Epoch 1/1... Discriminator Loss: 1.0031... Generator Loss: 0.9746
Epoch 1/1... Discriminator Loss: 0.7293... Generator Loss: 1.2578
Epoch 1/1... Discriminator Loss: 1.7528... Generator Loss: 0.3409
Epoch 1/1... Discriminator Loss: 1.1741... Generator Loss: 1.4683
Epoch 1/1... Discriminator Loss: 0.6059... Generator Loss: 2.6707
Epoch 1/1... Discriminator Loss: 0.7967... Generator Loss: 1.5349
Epoch 1/1... Discriminator Loss: 0.9238... Generator Loss: 2.2456
Epoch 1/1... Discriminator Loss: 0.5173... Generator Loss: 2.0573
Epoch 1/1... Discriminator Loss: 1.5270... Generator Loss: 2.2437
Epoch 1/1... Discriminator Loss: 1.6443... Generator Loss: 0.3600
Epoch 1/1... Discriminator Loss: 1.9740... Generator Loss: 0.2711
Epoch 1/1... Discriminator Loss: 1.2266... Generator Loss: 0.6283
Epoch 1/1... Discriminator Loss: 0.6643... Generator Loss: 2.2078
Epoch 1/1... Discriminator Loss: 1.5484... Generator Loss: 1.5726
Epoch 1/1... Discriminator Loss: 0.9068... Generator Loss: 1.1551
Epoch 1/1... Discriminator Loss: 0.8192... Generator Loss: 1.0182
Epoch 1/1... Discriminator Loss: 1.1070... Generator Loss: 0.9447
Epoch 1/1... Discriminator Loss: 0.7982... Generator Loss: 1.1617
Epoch 1/1... Discriminator Loss: 2.0012... Generator Loss: 0.2648
Epoch 1/1... Discriminator Loss: 1.2174... Generator Loss: 1.2010
Epoch 1/1... Discriminator Loss: 1.4637... Generator Loss: 0.4775
Epoch 1/1... Discriminator Loss: 1.2810... Generator Loss: 0.6510
Epoch 1/1... Discriminator Loss: 1.2881... Generator Loss: 1.7578
Epoch 1/1... Discriminator Loss: 1.0319... Generator Loss: 0.9521
Epoch 1/1... Discriminator Loss: 1.3067... Generator Loss: 0.5719
Epoch 1/1... Discriminator Loss: 1.1740... Generator Loss: 0.6628
Epoch 1/1... Discriminator Loss: 1.5163... Generator Loss: 0.4316
Epoch 1/1... Discriminator Loss: 1.2773... Generator Loss: 0.5477
Epoch 1/1... Discriminator Loss: 1.2042... Generator Loss: 0.6933
Epoch 1/1... Discriminator Loss: 0.5203... Generator Loss: 2.7140
Epoch 1/1... Discriminator Loss: 1.0710... Generator Loss: 0.7944
Epoch 1/1... Discriminator Loss: 1.7088... Generator Loss: 0.3407
Epoch 1/1... Discriminator Loss: 1.5610... Generator Loss: 0.4270
Epoch 1/1... Discriminator Loss: 1.0344... Generator Loss: 0.9137
Epoch 1/1... Discriminator Loss: 0.8591... Generator Loss: 1.4791
Epoch 1/1... Discriminator Loss: 1.1852... Generator Loss: 0.6483
Epoch 1/1... Discriminator Loss: 1.4150... Generator Loss: 0.4795
Epoch 1/1... Discriminator Loss: 1.0352... Generator Loss: 0.8923
Epoch 1/1... Discriminator Loss: 1.3737... Generator Loss: 0.5576
Epoch 1/1... Discriminator Loss: 1.0382... Generator Loss: 1.0141
Epoch 1/1... Discriminator Loss: 1.0408... Generator Loss: 0.7821
Epoch 1/1... Discriminator Loss: 1.8550... Generator Loss: 0.2775
Epoch 1/1... Discriminator Loss: 1.2421... Generator Loss: 0.5767

Submitting This Project

When submitting this project, make sure to run all the cells before saving the notebook. Save the notebook file as "dlnd_face_generation.ipynb" and save it as a HTML file under "File" -> "Download as". Include the "helper.py" and "problem_unittests.py" files in your submission.