The colors for the ColorScale can be defined one of two ways:
colors attribute to a list of css colors. They can be either:'white''#000000''rgb(0, 0, 0)'.col_sc = ColorScale(colors=['yellow', 'red'])
bqplot's color-schemes. As of now we support all the colorbrewer schemes (link), as well as the matplotlib schemes 'viridis', 'magma', 'inferno' and 'plasma'.col_sc = ColorScale(scheme=['viridis'])
The color scale then linearly interpolates between its colors.
A ColorAxis, like other Axis types, takes a color scale as input. It can then be displayed in a Figure.
ax_col = ColorAxis(scale=col_sc)
In [ ]:
import numpy as np
import bqplot.pyplot as plt
from bqplot import ColorScale, DateColorScale, OrdinalColorScale, ColorAxis
In [ ]:
# setup data for plotting
np.random.seed(0)
n = 100
x_data = range(n)
y_data = np.cumsum(np.random.randn(n) * 100.0)
In [ ]:
def create_fig(color_scale, color_data, fig_margin=None):
# allow some margin on right for color bar
if fig_margin is None:
fig_margin = dict(top=50, bottom=70, left=50, right=100)
fig = plt.figure(title='Up and Down', fig_margin=fig_margin)
# setup color scale
plt.scales(scales={'color': color_scale})
# show color bar on right
axes_options = {'color': {'orientation': 'vertical', 'side': 'right'}}
scat = plt.scatter(x_data, y_data, color=color_data, stroke='black', axes_options=axes_options)
return fig
In [ ]:
fig = create_fig(ColorScale(), y_data)
fig
In [ ]:
color_scale = fig.marks[0].scales['color']
color_scale.min = 0
In [ ]:
color_scale.reverse = True
In [ ]:
color_scale.min = None
color_scale.mid = 0
In [ ]:
import pandas as pd
fig_margin = dict(top=50, bottom=70, left=50, right=200)
date_col_sc = DateColorScale()
dates = pd.date_range(start='2015-01-01', periods=n)
create_fig(date_col_sc, dates, fig_margin=fig_margin)
In [ ]:
date_col_sc.min = pd.datetime(2016, 2, 28)
In [ ]:
from bqplot.market_map import MarketMap
from ipywidgets import IntSlider, SelectionSlider, Dropdown
from ipywidgets import VBox, HBox, Layout
from traitlets import link
In [ ]:
div_schemes = [
'Spectral',
'RdYlGn',
'RdBu',
'PiYG',
'PRGn',
'RdYlBu',
'BrBG',
'RdGy',
'PuOr',
]
In [ ]:
def scheme_inspector(fig, schemes, title=''):
'''
Takes a Figure and a list of schemes and returns the Figure along with
dropdown to go through the different schemes
'''
# Get the color scale
col_sc = fig.marks[0].scales['color']
# Create the widgets to select the colorscheme
scheme_dd = Dropdown(description='Scheme',
options=schemes)
def update_scheme(*args):
col_sc.scheme = scheme_dd.value
scheme_dd.observe(update_scheme, 'value')
update_scheme()
return VBox([scheme_dd, fig])
scheme_inspector(create_fig(ColorScale(), y_data), div_schemes)
In [ ]:
lin_schemes = [
'OrRd',
'PuBu',
'BuPu',
'Oranges',
'BuGn',
'YlOrBr',
'YlGn',
'Reds',
'RdPu',
'Greens',
'YlGnBu',
'Purples',
'GnBu',
'Greys',
'YlOrRd',
'PuRd',
'Blues',
'PuBuGn',
'viridis',
'plasma',
'inferno',
'magma'
]
In [ ]:
scheme_inspector(create_fig(ColorScale(), y_data), lin_schemes, title='Non-diverging schemes')
The OrdinalColorScale is a color scale for categorical data, i.e. data that does not have an intrinsic order.
The scale colors may be specified by the user, or chosen from a set scheme. As of now, the supported color schemes are the colorbrewer categorical schemes, listed here along with their maximum number of colors.
In [ ]:
ord_schemes = {
'Set2': 8,
'Accent': 8,
'Set1': 9,
'Set3': 12,
'Dark2': 8,
'Paired': 12,
'Pastel2': 8,
'Pastel1': 9,
}
In [ ]:
def partition(array, n_groups):
n_elements = len(array)
if n_groups > n_elements:
return np.arange(n_elements)
n_per_group = n_elements // n_groups + (n_elements % n_groups > 0)
return np.tile(range(1, n_groups+1), n_per_group)[:n_elements]
In [ ]:
# Define the control widgets
n_groups_slider = IntSlider(description='n colors', min=3)
scheme_dd = Dropdown(description='Scheme',
options=ord_schemes)
def update_scheme(*args):
col_sc.scheme = scheme_dd.label
ax_c.label = scheme_dd.label
n_groups_slider.max = scheme_dd.value
def update_categories(*args):
groups = partition(names, n_groups_slider.value)
market_map.color = groups
market_map.groups = groups
n_groups_slider.observe(update_categories, 'value')
scheme_dd.observe(update_scheme)
# Define the bqplot marketmap
names = range(100)
col_sc = OrdinalColorScale()
ax_c = ColorAxis(scale=col_sc)
market_map = MarketMap(names=names,
display_text=['' for _ in names],
scales={'color': col_sc}, axes=[ax_c],
layout=Layout(min_width='800px', min_height='600px'))
update_scheme()
update_categories()
VBox([HBox([scheme_dd, n_groups_slider]), market_map])